in the given figure below, 13.5-kg block is sliding down a 60°-rough incline. The speed DIOCK 1.86 m/s at the instant it is 5.52 m from an uncompressed spring located at 1 other lower end of the incline. The spring has a spring or stiffness constant of 210 N/m and the coefficient of kinetic friction between the block and the incline 0.45. (a) At what speed (in m/s) will the block strike the spring? (b) What would be the maximum compression (in m) of the spring? 5.52 m AW 60⁰

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

PLEASE ANSWER WITHIN 30MINS PLS PLS

Provide the final answer (with units) in the space given after each question 

Express your answers in two decimal places. 

In the given figure below, a 3.5-kg block is sliding down a 600-rough incline. The speed of the block is 1.86 m/s at the instant it is 5.52 m from an uncompressed spring located at the
other lower end of the incline. The spring has a spring or stiffness constant of 210 N/m and the coefficient of kinetic friction between the block and the incline is 0.45. (a) At what speed
(in m/s) will the block strike the spring? (b) What would be the maximum compression (in m) of the spring?
5.52 m
ww
60⁰
Transcribed Image Text:In the given figure below, a 3.5-kg block is sliding down a 600-rough incline. The speed of the block is 1.86 m/s at the instant it is 5.52 m from an uncompressed spring located at the other lower end of the incline. The spring has a spring or stiffness constant of 210 N/m and the coefficient of kinetic friction between the block and the incline is 0.45. (a) At what speed (in m/s) will the block strike the spring? (b) What would be the maximum compression (in m) of the spring? 5.52 m ww 60⁰
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON