In the circuit in Figure B1 with circuit and transistor parameters Rp = 20kn, K₂ = 0.1 mA/V², VTN = 0.8 V, and λ = 0. 2. V₁=5 V, V₂ = 0 al 3. V₁= V/₂=5 V M₁ VDD=5 V IDI V₂ Rp Ţ Figure B1 M₂ Determine the currents IR, ID1, D2, and voltage V, in a digital logic gate for the following input conditions: 1. V₁ V₂ = 0 V 102
In the circuit in Figure B1 with circuit and transistor parameters Rp = 20kn, K₂ = 0.1 mA/V², VTN = 0.8 V, and λ = 0. 2. V₁=5 V, V₂ = 0 al 3. V₁= V/₂=5 V M₁ VDD=5 V IDI V₂ Rp Ţ Figure B1 M₂ Determine the currents IR, ID1, D2, and voltage V, in a digital logic gate for the following input conditions: 1. V₁ V₂ = 0 V 102
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
![Physical Constants & Semiconductor Properties
q=1.602 x 10-19 C
a = 8.854 x 10-¹2 F/m
kB = 1.380 x 10-23 J/K
me = 9.109 x 10-³1 kg
1 μm = 1 x 10 m
&-Si=11.7
- Eg
n₁ = BT ³/22kT
Drift and Diffusion Currents
J=σ E=(1/p)E
dn
dx
NMOS
p-n Junction and Diode Circuits
Vbi
w = KeTmn (NAND)
e
J₁ = eD,
r₂ =
qVD
10 = 1. [exp (2012-)-1]
=
"N₁
Vs N₂
MOS Capacitor and MOSFETS
&A
d
C=
VDs (sat) = VGS - VTN
Enbomaan
Enhancement mode
VTN >0
Depletion mode
VIN<0
K.=+H.C. (17)=+*: (1)
سال)۔
Eg-Si = 1.1 eV
Eg-GaAs = 1.4 eV
Eg-Ge=0.66 eV
nsi = 1.45 x 10¹0 cm3
1 nm = 1 x 10-⁹ m
source regulation and load regulation:
r₂
Nonsaturation region (ups < ups (sat))
iD = K₂ [2(VGS - VTN)UDS - VDS]
Saturation region (ups > Ups(sat))
iD = K (VGS - VTN)²
Transition point
ic IseBE/Vy
=
photocurrent:
ic= 1, exp
Sox (3.9) x (8.854 x 10-12) F/m
=
n² = n. p
¡E = ¹ = e/Vr
18 = ¹=¹/V₂
For both transistors
ig=ic +iB
ig = (1+B) B
α = 1+B
V, z
_V₁B
ᏙᏰ
la
* EXP (*/ /* )( 1+ ²+ )
Formula Sheet
8₂ =
= 2K (V - VTN) = 2√ √K,IDQ
Lovas -
iDeal = K₂ (VGS - VIN) ² (1+2VDs)
V₂N = V₂NO+Y(√20₁ + VS - √201)
2 fRC
V=VT In
ic
o=enfle + epμh
dp
dx
Jp =-eDp
where f=
læ
8m V₁
In (NAND)
=
= [2K (VGs - V₁N)²] = [¹
Bsi 5.23 x 10¹5 cm-³K-3/2
BGaAs = 2.10 x 10¹4 cm³ K-3/2
BGe 1.66 x 10¹5 cm²³ K-3/2
μe-si= 1400 cm² V-1 s-l
1 pm = 1 x 10-¹2 m
C = Eax A
tax
PMOS
Bipolar Junction Transistor (BJT)
Summary of the bipolar current-voltage relationships in the active region
NPN
PNP
AVEX 100%
AVps
Iph = neDA
1
27,
IsevEB/V
¡E = ¹ = ¹e¹a/V₁
iB = = ¹/V₂
ic = BiB
E
1+8
ic = aig = (i
B = 12a
C₁ =
10 = 1 [expP(+)-1]
D₂ D₂ KT
=
=
H₂ Hp 9
V.
1+K
Nonsaturation region (USD < USD (sat))
iD = Kp[2(USG + VTP) VSD - USD]
Saturation region (VSD > VSD (sat))
ip = K₂(USG + VTP)²
Transition point
USD (sat) = USG + VTP
Enhora
Enhancement mode
VTP < 0
Depletion mode
VTP > 0
W
K₂ = + H₂Ca(²+) = + k, (1/7)
V₁
Ic
Thermal Voltage V = 0.026 V
Cut-in Voltage V₂ = 0.7 V
VL,no load VL, full load
VL, full load
μhs = 450 cm² V-1 S-1
1 fm = 1 x 10-15 m
ON
-x 100%
Eax
t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F776cb3db-eac4-41f5-9d73-a791527848a6%2F66125e_processed.png&w=3840&q=75)
Transcribed Image Text:Physical Constants & Semiconductor Properties
q=1.602 x 10-19 C
a = 8.854 x 10-¹2 F/m
kB = 1.380 x 10-23 J/K
me = 9.109 x 10-³1 kg
1 μm = 1 x 10 m
&-Si=11.7
- Eg
n₁ = BT ³/22kT
Drift and Diffusion Currents
J=σ E=(1/p)E
dn
dx
NMOS
p-n Junction and Diode Circuits
Vbi
w = KeTmn (NAND)
e
J₁ = eD,
r₂ =
qVD
10 = 1. [exp (2012-)-1]
=
"N₁
Vs N₂
MOS Capacitor and MOSFETS
&A
d
C=
VDs (sat) = VGS - VTN
Enbomaan
Enhancement mode
VTN >0
Depletion mode
VIN<0
K.=+H.C. (17)=+*: (1)
سال)۔
Eg-Si = 1.1 eV
Eg-GaAs = 1.4 eV
Eg-Ge=0.66 eV
nsi = 1.45 x 10¹0 cm3
1 nm = 1 x 10-⁹ m
source regulation and load regulation:
r₂
Nonsaturation region (ups < ups (sat))
iD = K₂ [2(VGS - VTN)UDS - VDS]
Saturation region (ups > Ups(sat))
iD = K (VGS - VTN)²
Transition point
ic IseBE/Vy
=
photocurrent:
ic= 1, exp
Sox (3.9) x (8.854 x 10-12) F/m
=
n² = n. p
¡E = ¹ = e/Vr
18 = ¹=¹/V₂
For both transistors
ig=ic +iB
ig = (1+B) B
α = 1+B
V, z
_V₁B
ᏙᏰ
la
* EXP (*/ /* )( 1+ ²+ )
Formula Sheet
8₂ =
= 2K (V - VTN) = 2√ √K,IDQ
Lovas -
iDeal = K₂ (VGS - VIN) ² (1+2VDs)
V₂N = V₂NO+Y(√20₁ + VS - √201)
2 fRC
V=VT In
ic
o=enfle + epμh
dp
dx
Jp =-eDp
where f=
læ
8m V₁
In (NAND)
=
= [2K (VGs - V₁N)²] = [¹
Bsi 5.23 x 10¹5 cm-³K-3/2
BGaAs = 2.10 x 10¹4 cm³ K-3/2
BGe 1.66 x 10¹5 cm²³ K-3/2
μe-si= 1400 cm² V-1 s-l
1 pm = 1 x 10-¹2 m
C = Eax A
tax
PMOS
Bipolar Junction Transistor (BJT)
Summary of the bipolar current-voltage relationships in the active region
NPN
PNP
AVEX 100%
AVps
Iph = neDA
1
27,
IsevEB/V
¡E = ¹ = ¹e¹a/V₁
iB = = ¹/V₂
ic = BiB
E
1+8
ic = aig = (i
B = 12a
C₁ =
10 = 1 [expP(+)-1]
D₂ D₂ KT
=
=
H₂ Hp 9
V.
1+K
Nonsaturation region (USD < USD (sat))
iD = Kp[2(USG + VTP) VSD - USD]
Saturation region (VSD > VSD (sat))
ip = K₂(USG + VTP)²
Transition point
USD (sat) = USG + VTP
Enhora
Enhancement mode
VTP < 0
Depletion mode
VTP > 0
W
K₂ = + H₂Ca(²+) = + k, (1/7)
V₁
Ic
Thermal Voltage V = 0.026 V
Cut-in Voltage V₂ = 0.7 V
VL,no load VL, full load
VL, full load
μhs = 450 cm² V-1 S-1
1 fm = 1 x 10-15 m
ON
-x 100%
Eax
t
![In the circuit in Figure B1 with circuit and transistor parameters Rp = 20kn, K₂ =
0.1 mA/V², VTN = 0.8 V, and λ = 0.
2. V₁=5 V, V₂ = 0
al
3. V₁= V/₂=5 V
M₁
VDD=5 V
IDI
V₂
Rp
Ţ
Figure B1
M₂
Determine the currents IR, ID1, D2, and voltage V, in a digital logic gate for the following input
conditions:
1. V₁ V₂ = 0 V
102](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F776cb3db-eac4-41f5-9d73-a791527848a6%2F3qj5le_processed.png&w=3840&q=75)
Transcribed Image Text:In the circuit in Figure B1 with circuit and transistor parameters Rp = 20kn, K₂ =
0.1 mA/V², VTN = 0.8 V, and λ = 0.
2. V₁=5 V, V₂ = 0
al
3. V₁= V/₂=5 V
M₁
VDD=5 V
IDI
V₂
Rp
Ţ
Figure B1
M₂
Determine the currents IR, ID1, D2, and voltage V, in a digital logic gate for the following input
conditions:
1. V₁ V₂ = 0 V
102
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,