In the breeding season, male Anole lizards court females by bobbing their heads up and down while displaying a colorful throat patch. Assume for this question that both males and females bob their heads and have throat patches. Assume also, that both traits are controlled by single locus genes on separate chromosomes. Now, suppose that anoles prefer to mate with lizards who bob their heads fast (F) and have red throat patches (R) and that these two alleles are dominant to their counterparts, slow bobbing and yellow throats. A male lizard heterozygous for head bobbing and homozygous dominant for the red throat patch mates with a female that is also heterozygous for head bobbing but is homozygous recessive for yellow throat patches. How many of the F1 offspring have the preferred fast bobbing / red throat phenotype (assume 16 young)?
In the breeding season, male Anole lizards court females by bobbing their heads up and down while displaying a colorful throat patch. Assume for this question that both males and females bob their heads and have throat patches. Assume also, that both traits are controlled by single locus genes on separate chromosomes. Now, suppose that anoles prefer to mate with lizards who bob their heads fast (F) and have red throat patches (R) and that these two alleles are dominant to their counterparts, slow bobbing and yellow throats. A male lizard heterozygous for head bobbing and homozygous dominant for the red throat patch mates with a female that is also heterozygous for head bobbing but is homozygous recessive for yellow throat patches. How many of the F1 offspring have the preferred fast bobbing / red throat
Trending now
This is a popular solution!
Step by step
Solved in 2 steps