In Problem. apply the successive approximation formula to compute yn(x) for n 4. Then write the expo- nential series for which these approximations are partial sums (perhaps with the first term or two missing; for example, 1,2 = -2y, y(0) = 4 dx

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In Problem.
apply the successive approximation
formula to compute yn(x) for n 4. Then write the expo-
nential series for which these approximations are partial sums
(perhaps with the first term or two missing; for example,
1,2
= -2y, y(0) = 4
dx
Transcribed Image Text:In Problem. apply the successive approximation formula to compute yn(x) for n 4. Then write the expo- nential series for which these approximations are partial sums (perhaps with the first term or two missing; for example, 1,2 = -2y, y(0) = 4 dx
Expert Solution
Step 1

Given,

        dydx=-2y, y(0)=4.

Step 2

By using the Picard iteration method:

               dydx=f(x, y), y(x0)=y0,                                   ...(1)y(x)=y0+x0xf(t, y(t)) dt,                                 ...(2) 

From (1) and (2), we obtain

      yn(x)=y0+x0xf(t, yn-1(t)) dt,   n=1, 2, 3.  

Now,

                dydx=-2y, y(0)=4, f(x, y)=-2y,   y0=4, x0=0.

 y1=y0+x0xf(t, 4)dt         =4+0x-8dt,         =4-80xdt,         =4-8t0x,         =4-8x.   

Step 3

    y2=y1+x0xf(t, y1)dt         =4+0x-24-8tdt,         =4-80x1-2tdt,         =4-8t-t20x,         =4-8x-x2         =4-8x+8x2.

    y3=y0+x0xf(t, y2)dt         =4+0x-24-8t+8t2dt         =4-80x1-2t+2t2dt         =4-8t-t2+23t30x,         =4-8x+8x2-163x3.

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,