In order to improve the production time, the supervisor of assembly lines for a manufacturer of cellular phones has studied the time that it takes to assemble certain parts of a phone at various stations. She measures the time that it takes to assemble a specific part by 158 people at different shift on different days. The record of her study is organized and shown in the following table. Assume the normal distribution. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
In order to improve the production time, the supervisor of assembly lines for a manufacturer of cellular phones has studied the time that it takes to assemble certain parts of a phone at various stations. She measures the time that it takes to assemble a specific part by 158 people at different shifts
on different days. The record of her study is organized and shown in the following table. Assume the normal distribution. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.)
Time That it takes a person to Assemble the Part (minutes)
What is the mean (in minutes)?
x =
minutes
What is the standard deviation (in minutes)?
S=
157
Z =
4
5
6
7
8
9
10
minutes
What is the z value corresponding to 6 minutes?
X - X
6-
=*=*=.
S
Frequency
13
24
26
32
26
24
13
Transcribed Image Text:In order to improve the production time, the supervisor of assembly lines for a manufacturer of cellular phones has studied the time that it takes to assemble certain parts of a phone at various stations. She measures the time that it takes to assemble a specific part by 158 people at different shifts on different days. The record of her study is organized and shown in the following table. Assume the normal distribution. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) Time That it takes a person to Assemble the Part (minutes) What is the mean (in minutes)? x = minutes What is the standard deviation (in minutes)? S= 157 Z = 4 5 6 7 8 9 10 minutes What is the z value corresponding to 6 minutes? X - X 6- =*=*=. S Frequency 13 24 26 32 26 24 13
Expert Solution
steps

Step by step

Solved in 5 steps with 1 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Referring to this table, determine the A value corresponding to the z value for a 6-minute-assembly line.
A =
What is the z score corresponding to 8 minutes?
8-
z =
X-X
S
=
Referring to this table, determine the A value corresponding to the z value for an 8-minute-assembly line.
A =
Determine the probability that it will take a person between 6 and 8 minutes to assemble the phone.
probability
=
Transcribed Image Text:Referring to this table, determine the A value corresponding to the z value for a 6-minute-assembly line. A = What is the z score corresponding to 8 minutes? 8- z = X-X S = Referring to this table, determine the A value corresponding to the z value for an 8-minute-assembly line. A = Determine the probability that it will take a person between 6 and 8 minutes to assemble the phone. probability =
Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal
Distribution Function of Excel
Note that the standard normal curve is symmetrical about the mean.
z
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
1
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
Mean - 0
1.06
1.07
1.08
1.09
A
0.0000
0.0040
0.0080
0.0120
0.0160
0.0199
0.0239
0.0279
0.0319
0.0359
0.0398
0.0438
0.0478
A
0.3186
0.3212
0.3238
0.3264
0.3289
0.3315
0.3340
0.3365
0.3389
Z
0.3413
0.3438
0.3461
0.3485
0.3508
0.3531
0.3554
0.3577
0.3599
0.3621
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
1.12
1.13
1.14
1.15
1.16
1.17
A
z
0.0517
0.0557
0.26
0.27
0.28
0.29
0.0596
0.0636
0.0675 0.3
0.0714 0.31
0.0753 0.32
0.0793 0.33
0.0832 0.34
0.0871 0.35
0.0910
0.0948
0.0987
1.18
1.19
1.2
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
A
0.3643
0.3665
0.3686
0.3708
0.3729
0.3749
0.3770
0.3790
0.3810
0.36
0.3830
0.3849
0.3869
0.3888
0.3907
0.3925
0.3944
0.3962
0.3980
0.3997
0.37
0.38
z
1.29
1.3
1.31
1.32
1.33
1.34
1.35
A-03413
1.36
1.37
1.38
1.39
1.4
1.41
1.42
1.43
1.44
1.45
1.46
1.47
21.00
A
0.1026
0.1064
0.1103
Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal
Distribution Function of Excel (continued)
z
Z
0.91
0.92
0.93
1.1
1.11
0.94
0.1443
Z
0.44
0.1141
0.1179
0.1217
0.1255 0.45
0.1293 0.46
0.1331
0.47
0.1368 0.48
0.1406
0.49
0.5
0.51
0.1480
0.39
0.4
0.41
0.42
0.43
A
0.4015
0.4032
0.4049
0.4066
0.4082
0.4099
0.4115
0.4131
0.4147
0.4162
1.54
1.55
1.56
1.57
0.4177 1.58
0.4192 1.59
0.4207 1.6
0.4222 1.61
0.4236 1.62
0.4251 1.63
1.64
1.65
1.66
0.4265
0.4279
0.4292
z
1.48
1.49
1.5
1.51
1.52
A
0.1517
1.53
0.1554
0.1591
0.1628
0.1664
0,1700
0.1736
0.1772
0.1808
0.1844
0.1879
0.1915
0.1950
A
0.4306
0.4319
0.4332
0.4345
0.4357
0.4370
0.4382
0.4394
0.4406
0.4418
z
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.6
0.61
0.62
0.63
0.64
0.4429
0.4441
04452
0.4463
0.4474
0.4484
0.4495
0.4505
0.4515
z
1.67
1.68
1.69
1.7
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.8
A04772
1.81
1.82
1.83
1.84
1.85
z-2.00
Z
0.65
0.66
A
A
0.78
0.1985
0.2422
0.2019
0.2454 0.79
0.2054 0.67 0.2486 0.8
0.2088 0.68 0.2517
0.81
0.2123 0.69 0.2549 0.82
0.2157 0.7
0.2580 0.83
0.2190 0.71 0.2611 0.84
0.2224 0.72 0.2642 0.85
0.2257 0.73 0.2673 0.86
0.2291 0.74 0.2704 0.87
0.2324 0.75 0.2734 0.88
0.2357 0.76 0.2764
0.89
0.2389 0.77 0.2794 0.9
A
0.4525
0.4535
0.4545
0.4554
0.4564
0.4573
0.4582
0.4591
0.4599
0.4608
0.4616
0.4625
0.4633
0.4641
0.4649
0.4656
0.4664
0.4671
0.4678
z
1.86
1.87
1.88
1.89
1.9
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2
Z
2.01
2.02
2.03
2.04
A-0.4987
A
z
0.4686 2.05
0.4693 2.06
0.4699
0.4706
2.08
0.4713 2.09
0.4719
2.1
0.4726 2.11
0.4732 2.12
0.4738 2.13
0.4744 2.14
0.4750 2.15
2.16
0.4756
0.4761 2.17
0.4767
2.18
0.4772 2.19
0.4778 2.2
0.4783 2.21
0.4788
0.4793
2.07
2.22
2.23
-3.00
A
0.2823
0.2852
0.2881
0.2910
0.2939
0.2967
0.2995
0.3023
0.3051
0.3078
0.3106
0.3133
0.3159
(continued)
A
0.4798
0.4803
0.4808
0.4812
0.4817
0.4821
0.4826
0.4830
0.4834
0.4838
0.4842
0.4846
0.4850
0.4854
0.4857
0.4861
0.4864
0.4868
0.4871
Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal
Distribution Function of Excel (continued)
2,24
2.26
2.27
2.28
0.4875 2.43 0.4925 2.62
0.4878 2.44 0.4927 2.63
0.4881 2.45 0.4929 2.64
0.4884 2.46 0.4931 2.65
0.4887 2.47
2.66
2.29 0.4890
2.48 0.4934 2.67
2.49
2.3 0.4893
0.4936
2.31 0.4896 2.5 0.4938 2.69
0.4898 2.51 0.4940 2.7
0.4901 2.52 0,4941 2.71
0.4904 2.53 0.4943 2.72
2.54 0.4945 2.73
0.4906
0.4909
2.55
0.4946 2.74
0.4911 2.56 0.4948 2.75
0.4913 2.57 0.4949 2.76
0.4916 2.58 0.4951 2.77
0.4918
0.4920 2.6 0.4953
0.4922 2.61 0.4955
2.78
2.79
2.25
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.4
2.41
2.42
2.59
0.4932
0.4952
2.68
2.8
0.4956
0.4957
0.4959
0.4960
0.4961
0.4962
0.4963
0.4964
0.4965
0.4966
0.4967 2.91
0.4968 2.92
0.4969 2.93
0.4970
2.94
0.4971 2.95
0.4972 2.96
0.4973 2.97
0.4974 2.98
0.4974 2.99
2.81 0.4975 3
0.4987 3.19
2.82 0.4976 3.01 0.4987 3.2
2.83 0.4977 3.02 0.4987 3.21
0.4977 3.03 0.4988 3.22
2.85 0.4978 3.04 0.4988 3.23
2.86 0.4979 3.05 0.4989
2.87
0.4979
3.06
2.88
3.07
2.89 0.4981 3.08
0.4981 3.09
0.4982
0.4980
2.84
2.9
0.4982
0.4983
3.1
3.11
3.12
3.13
0.4984
0.4984 3.14
0.4985 3.15
0.4985
0.4986 3.17
0.4986
3.16
0.4993 3.38
0.4993 3.39
0.4993 3.4
3.41
0.4994 3.42
0.4994 3.43
0.4994
3.25
3.44
0.4989 3.26 0.4994 3.45
0.4990 3.27
0.4990
3.18
0.4989
0.4990
0.4991
3.24
3.28
3.29
3.3
0.4991 3.31
0.4991 3.32
0.4992 3.33
0.4992 3.34
0.4992 3.35
0.4992 3.36
0.4993 3.37
0.4994
0.4995 3.46
0.4995 3.47
0.4995 3.48
0.4995 3.49
0.4995 3.5
0.4995 3.51
0.4996 3.52
0.4996 3.53
0.4996
0.4996
0.4996
***
***
3.9
0.4996
0.4997
0.4997
0.4997
0.4997
0.4997
0.4997
0.4997
0.4997
0.4997
0.4997
0.4998
0.4998
0.4998
0.4998
0.4998
c...
***
0.5000
End of document
Transcribed Image Text:Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal Distribution Function of Excel Note that the standard normal curve is symmetrical about the mean. z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 1 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 Mean - 0 1.06 1.07 1.08 1.09 A 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.0398 0.0438 0.0478 A 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 Z 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 1.12 1.13 1.14 1.15 1.16 1.17 A z 0.0517 0.0557 0.26 0.27 0.28 0.29 0.0596 0.0636 0.0675 0.3 0.0714 0.31 0.0753 0.32 0.0793 0.33 0.0832 0.34 0.0871 0.35 0.0910 0.0948 0.0987 1.18 1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 A 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.36 0.3830 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.37 0.38 z 1.29 1.3 1.31 1.32 1.33 1.34 1.35 A-03413 1.36 1.37 1.38 1.39 1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47 21.00 A 0.1026 0.1064 0.1103 Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal Distribution Function of Excel (continued) z Z 0.91 0.92 0.93 1.1 1.11 0.94 0.1443 Z 0.44 0.1141 0.1179 0.1217 0.1255 0.45 0.1293 0.46 0.1331 0.47 0.1368 0.48 0.1406 0.49 0.5 0.51 0.1480 0.39 0.4 0.41 0.42 0.43 A 0.4015 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 1.54 1.55 1.56 1.57 0.4177 1.58 0.4192 1.59 0.4207 1.6 0.4222 1.61 0.4236 1.62 0.4251 1.63 1.64 1.65 1.66 0.4265 0.4279 0.4292 z 1.48 1.49 1.5 1.51 1.52 A 0.1517 1.53 0.1554 0.1591 0.1628 0.1664 0,1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.1915 0.1950 A 0.4306 0.4319 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 z 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.4429 0.4441 04452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 z 1.67 1.68 1.69 1.7 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.8 A04772 1.81 1.82 1.83 1.84 1.85 z-2.00 Z 0.65 0.66 A A 0.78 0.1985 0.2422 0.2019 0.2454 0.79 0.2054 0.67 0.2486 0.8 0.2088 0.68 0.2517 0.81 0.2123 0.69 0.2549 0.82 0.2157 0.7 0.2580 0.83 0.2190 0.71 0.2611 0.84 0.2224 0.72 0.2642 0.85 0.2257 0.73 0.2673 0.86 0.2291 0.74 0.2704 0.87 0.2324 0.75 0.2734 0.88 0.2357 0.76 0.2764 0.89 0.2389 0.77 0.2794 0.9 A 0.4525 0.4535 0.4545 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 z 1.86 1.87 1.88 1.89 1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2 Z 2.01 2.02 2.03 2.04 A-0.4987 A z 0.4686 2.05 0.4693 2.06 0.4699 0.4706 2.08 0.4713 2.09 0.4719 2.1 0.4726 2.11 0.4732 2.12 0.4738 2.13 0.4744 2.14 0.4750 2.15 2.16 0.4756 0.4761 2.17 0.4767 2.18 0.4772 2.19 0.4778 2.2 0.4783 2.21 0.4788 0.4793 2.07 2.22 2.23 -3.00 A 0.2823 0.2852 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.3159 (continued) A 0.4798 0.4803 0.4808 0.4812 0.4817 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 0.4861 0.4864 0.4868 0.4871 Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal Distribution Function of Excel (continued) 2,24 2.26 2.27 2.28 0.4875 2.43 0.4925 2.62 0.4878 2.44 0.4927 2.63 0.4881 2.45 0.4929 2.64 0.4884 2.46 0.4931 2.65 0.4887 2.47 2.66 2.29 0.4890 2.48 0.4934 2.67 2.49 2.3 0.4893 0.4936 2.31 0.4896 2.5 0.4938 2.69 0.4898 2.51 0.4940 2.7 0.4901 2.52 0,4941 2.71 0.4904 2.53 0.4943 2.72 2.54 0.4945 2.73 0.4906 0.4909 2.55 0.4946 2.74 0.4911 2.56 0.4948 2.75 0.4913 2.57 0.4949 2.76 0.4916 2.58 0.4951 2.77 0.4918 0.4920 2.6 0.4953 0.4922 2.61 0.4955 2.78 2.79 2.25 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.4 2.41 2.42 2.59 0.4932 0.4952 2.68 2.8 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 0.4965 0.4966 0.4967 2.91 0.4968 2.92 0.4969 2.93 0.4970 2.94 0.4971 2.95 0.4972 2.96 0.4973 2.97 0.4974 2.98 0.4974 2.99 2.81 0.4975 3 0.4987 3.19 2.82 0.4976 3.01 0.4987 3.2 2.83 0.4977 3.02 0.4987 3.21 0.4977 3.03 0.4988 3.22 2.85 0.4978 3.04 0.4988 3.23 2.86 0.4979 3.05 0.4989 2.87 0.4979 3.06 2.88 3.07 2.89 0.4981 3.08 0.4981 3.09 0.4982 0.4980 2.84 2.9 0.4982 0.4983 3.1 3.11 3.12 3.13 0.4984 0.4984 3.14 0.4985 3.15 0.4985 0.4986 3.17 0.4986 3.16 0.4993 3.38 0.4993 3.39 0.4993 3.4 3.41 0.4994 3.42 0.4994 3.43 0.4994 3.25 3.44 0.4989 3.26 0.4994 3.45 0.4990 3.27 0.4990 3.18 0.4989 0.4990 0.4991 3.24 3.28 3.29 3.3 0.4991 3.31 0.4991 3.32 0.4992 3.33 0.4992 3.34 0.4992 3.35 0.4992 3.36 0.4993 3.37 0.4994 0.4995 3.46 0.4995 3.47 0.4995 3.48 0.4995 3.49 0.4995 3.5 0.4995 3.51 0.4996 3.52 0.4996 3.53 0.4996 0.4996 0.4996 *** *** 3.9 0.4996 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4998 0.4998 0.4998 0.4998 c... *** 0.5000 End of document
Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY