In Following problem, compare the accuracy of the approximationwith y (x*) using the improved Euler’s method starting at x0 with step sizea. 0.2      b. 0.1       c. 0.05d. Describe what happens to the error as the step size decreases. y' = 2y2(x - 1), y(2) = -1/2, x0 = 2, x* = 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

In Following problem, compare the accuracy of the approximation
with y (x*) using the improved Euler’s method starting at x0 with step size
a. 0.2      b. 0.1       c. 0.05
d. Describe what happens to the error as the step size decreases.

y' = 2y2(x - 1), y(2) = -1/2, x0 = 2, x* = 3

Expert Solution
Step 1

Given:

y'=2y2x-1y2=-12=-0.5.

To find: y3 when
(a) h=0.2,
(b) h=0.1,
(c) h=0.05.

(d) Describe what happens to the error as the step size decreases.

Step 2

(a) h=0.2

y'=fx,y=2y2x-1

Applying the Improved Euler method:

ym+1=ym+12hfxm, ym+fxm+h, ym+hfxm, ym

fx0, y0=f2, -0.5=0.5

fx0+h, y0+hfx0, y0=f2.2, -0.4=0.384

y1=y0+12hfx0, y0+fx0+h, y0+hfx0, y0

y1=-0.5+0.220.5+0.384y1=-0.4116

Again taking x1, y1 in place of x0, y0 and repeating the above process we get,

fx1, y1=f2.2, -0.4116=0.4066

fx1+h, y1+hfx1, y1=f2.4, -0.3303=0.3054

y2=y1+12hfx1, y1+fx1+h, y1+hfx1, y1

y2=-0.4116+0.220.4066+0.3054y2=-0.3404

Again taking x2, y2 in place of x1, y1 and repeating the above process we get,

fx2, y2=f2.4, -0.3404=0.3244

fx2+h, y2+hfx2, y2=f2.6, -0.2755=0.2429

y3=y2+12hfx2, y2+fx2+h, y2+hfx2, y2

y3=-0.3404+0.220.3244+0.2429y3=-0.2837

Again taking x3, y3 in place of x2, y2 and repeating the above process we get,

fx3, y3=f2.6, -0.2837=0.2575

fx3+h, y3+hfx3, y3=f2.8, -0.2322=0.194

y4=y3+12hfx3, y3+fx3+h, y3+hfx3, y3

y4=-0.2837+0.220.2575+0.194y4=-0.2385

Again taking x4, y4 in place of x3, y3 and repeating the above process we get,

fx4, y4=f2.8, -0.2385=0.2048

fx4+h, y4+hfx4, y4=f3, -0.1976=0.1561

y5=y4+12hfx4, y4+fx4+h, y4+hfx4, y4

y5=-0.2385+0.220.2048+0.1561y5=-0.2024

y3=-0.2024

Step 3

(b) h=0.1

y'=fx,y=2y2x-1

Applying the Improved Euler method:

ym+1=ym+12hfxm, ym+fxm+h, ym+hfxm, ym

fx0, y0=f2, -0.5=0.5

fx0+h, y0+hfx0, y0=f2.1, -0.45=0.4455

y1=y0+12hfx0, y0+fx0+h, y0+hfx0, y0

y1=-0.5+0.120.5+0.4455y1=-0.4527

Again taking x1, y1 in place of x0, y0 and repeating the above process we get,

fx1, y1=f2.1, -0.4527=0.4509

fx1+h, y1+hfx1, y1=f2.2, -0.4076=0.3988

y2=y1+12hfx1, y1+fx1+h, y1+hfx1, y1

y2=-0.4527+0.120.4509+0.3988y2=-0.4102

Again taking x2, y2 in place of x1, y1 and repeating the above process we get,

fx2, y2=f2.2, -0.4102=0.4039

fx2+h, y2+hfx2, y2=f2.3, -0.3698=0.3556

y3=y2+12hfx2, y2+fx2+h, y2+hfx2, y2

y3=-0.4102+0.120.4039+0.3556y3=-0.3723

Again taking x3, y3 in place of x2, y2 and repeating the above process we get,

fx3, y3=f2.3, -0.3723=0.3603

fx3+h, y3+hfx3, y3=f2.4, -0.3362=0.3165

y4=y3+12hfx3, y3+fx3+h, y3+hfx3, y3

y4=-0.3723+0.120.3603+0.3165y4=-0.3384

Again taking x4, y4 in place of x3, y3 and repeating the above process we get,

fx4, y4=f2.4, -0.3384=0.3207

fx4+h, y4+hfx4, y4=f2.5, -0.3064=0.2816

y5=y4+12hfx4, y4+fx4+h, y4+hfx4, y4

y5=-0.3384+0.120.3207+0.2816y5=-0.3083

Again taking x5, y5 in place of x4, y4 and repeating the above process we get,

fx5, y5=f2.5, -0.3083=0.2852

fx5+h, y5+hfx5, y5=f2.6, -0.2798=0.2505

y6=y5+12hfx5, y5+fx5+h, y5+hfx5, y5

y6=-0.3083+0.120.2852+0.2505y6=-0.2815

Again taking x6, y6 in place of x5, y5 and repeating the above process we get,

fx6, y6=f2.6, -0.2815=0.2536

fx7+h, y7+hfx7, y7=f2.7, -0.2562=0.2231

y7=y6+12hfx6, y6+fx6+h, y6+hfx6, y6

y7=-0.2815+0.120.2536+0.2231y7=-0.2577

Again taking x7, y7 in place of x6, y6 and repeating the above process we get,

fx7, y7=f2.7, -0.2577=0.2258

fx7+h, y7+hfx7, y7=f2.8, -0.2351=0.199

y8=y7+12hfx7, y7+fx7+h, y7+hfx7, y7

y8=-0.2577+0.120.2258+0.199y8=-0.2364

Again taking x8, y8 in place of x7, y7 and repeating the above process we get,

fx8, y8=f2.8, -0.2364=0.2013

fx8+h, y8+hfx8, y8=f2.9, -0.2163=0.1778

y9=y8+12hfx8, y8+fx8+h, y8+hfx8, y8

y9=-0.2364+0.120.2013+0.1778y9=-0.2175

Again taking x9, y9 in place of x8, y8 and repeating the above process we get,

fx9, y9=f2.9, -0.2175=0.1798

fx9+h, y9+hfx9, y9=f3, -0.1995=0.1592

y10=y9+12hfx9, y9+fx9+h, y9+hfx9, y9

y10=-0.2175+0.120.1798+0.1592y10=-0.2005

y3=-0.2005

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,