In Figure (a), a particle of charge +e is initially at coordinate z = 20 nm on the dipole axis through an electric dipole, on the positive side of the dipole. (The origin of z is at the dipole center.) The particle is then moved along a circular path around the dipole center until it is at coordinate z = -20 nm. Figure (b) gives the work Wa done by the force moving the particle versus the angle θ that locates the particle. The scale of the vertical axis is set by Was = 4.0 × 10-30 J. What is the magnitude of the dipole moment? The answer was not 1.112*10^-36.
Dielectric Constant Of Water
Water constitutes about 70% of earth. Some important distinguishing properties of water are high molar concentration, small dissociation constant and high dielectric constant.
Electrostatic Potential and Capacitance
An electrostatic force is a force caused by stationary electric charges /fields. The electrostatic force is caused by the transfer of electrons in conducting materials. Coulomb’s law determines the amount of force between two stationary, charged particles. The electric force is the force which acts between two stationary charges. It is also called Coulomb force.
In Figure (a), a particle of charge +e is initially at coordinate z = 20 nm on the dipole axis through an electric dipole, on the positive side of the dipole. (The origin of z is at the dipole center.) The particle is then moved along a circular path around the dipole center until it is at coordinate z = -20 nm. Figure (b) gives the work Wa done by the force moving the particle versus the angle θ that locates the particle. The scale of the vertical axis is set by Was = 4.0 × 10-30 J. What is the magnitude of the dipole moment?
The answer was not 1.112*10^-36.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images