In Exercises 1-8, find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve. 1. r(t) = (2 cos t)i + (2 sin t)j + √5tk, 0≤t≤T

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
In Exercises 1-8, find the curve's unit tangent vector. Also, find the
length of the indicated portion of the curve.
1. r(t) = (2 cost)i + (2 sin t)j + √5tk,
0≤ t ≤ T
0≤ t ≤ T
=
2. r(t) (6 sin 2t)i + (6 cos 2t)j + 5tk,
3. r(t) = ti + (2/3)t³/2k, 0≤ t ≤8
4. r(t) = (2+t)i (t + 1)j + tk, 0≤t≤3
5. r(t) =
6. r(t) =
7. r(t) =
(cos³ t)j + (sin³t)k, 0≤ t ≤ π/2
6t³i - 2t³j - 3t³k, 1 ≤ t ≤2
(t cos t)i + (t sin t)j + (2√2/3)1³/2k, 0≤t≤ T
Transcribed Image Text:In Exercises 1-8, find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve. 1. r(t) = (2 cost)i + (2 sin t)j + √5tk, 0≤ t ≤ T 0≤ t ≤ T = 2. r(t) (6 sin 2t)i + (6 cos 2t)j + 5tk, 3. r(t) = ti + (2/3)t³/2k, 0≤ t ≤8 4. r(t) = (2+t)i (t + 1)j + tk, 0≤t≤3 5. r(t) = 6. r(t) = 7. r(t) = (cos³ t)j + (sin³t)k, 0≤ t ≤ π/2 6t³i - 2t³j - 3t³k, 1 ≤ t ≤2 (t cos t)i + (t sin t)j + (2√2/3)1³/2k, 0≤t≤ T
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,