In considering the energy supply for an automobile, the energy per unit mass of the energy source is an important parameter. The "heat of combustion" or stored energy per mass is quite similar for gasoline, ethanol, diesel fuel, cooking oil, methane, and propane. For a broader perspective, compare the energy per mass in joules per kilogram for gasoline, lead-acid batteries, hydrogen, and hay by stating the factor of increase between each one and the next. Hydrogen has "heat of combustion" 142 MJ/kg. For wood, hay, and dry vegetable matter in general, this parameter is 17 MJ/kg. A fully charged 17.0 kg lead-acid battery can deliver power 1450 W for 1.0 hr. (For comparison, the "heat of combustion" of gasoline is about 44 MJ/kg.) battery MJ/kg hay ✕ larger than battery energy/mass gasoline ✕ larger than hay energy/mass hydrogen ✕ larger than gasoline energy/mass
Kinematics
A machine is a device that accepts energy in some available form and utilizes it to do a type of work. Energy, work, or power has to be transferred from one mechanical part to another to run a machine. While the transfer of energy between two machine parts, those two parts experience a relative motion with each other. Studying such relative motions is termed kinematics.
Kinetic Energy and Work-Energy Theorem
In physics, work is the product of the net force in direction of the displacement and the magnitude of this displacement or it can also be defined as the energy transfer of an object when it is moved for a distance due to the forces acting on it in the direction of displacement and perpendicular to the displacement which is called the normal force. Energy is the capacity of any object doing work. The SI unit of work is joule and energy is Joule. This principle follows the second law of Newton's law of motion where the net force causes the acceleration of an object. The force of gravity which is downward force and the normal force acting on an object which is perpendicular to the object are equal in magnitude but opposite to the direction, so while determining the net force, these two components cancel out. The net force is the horizontal component of the force and in our explanation, we consider everything as frictionless surface since friction should also be calculated while called the work-energy component of the object. The two most basics of energy classification are potential energy and kinetic energy. There are various kinds of kinetic energy like chemical, mechanical, thermal, nuclear, electrical, radiant energy, and so on. The work is done when there is a change in energy and it mainly depends on the application of force and movement of the object. Let us say how much work is needed to lift a 5kg ball 5m high. Work is mathematically represented as Force ×Displacement. So it will be 5kg times the gravitational constant on earth and the distance moved by the object. Wnet=Fnet times Displacement.
In considering the energy supply for an automobile, the energy per unit mass of the energy source is an important parameter. The "heat of combustion" or stored energy per mass is quite similar for gasoline, ethanol, diesel fuel, cooking oil, methane, and propane. For a broader perspective, compare the energy per mass in joules per kilogram for gasoline, lead-acid batteries, hydrogen, and hay by stating the factor of increase between each one and the next. Hydrogen has "heat of combustion" 142 MJ/kg. For wood, hay, and dry vegetable matter in general, this parameter is 17 MJ/kg. A fully charged 17.0 kg lead-acid battery can deliver power 1450 W for 1.0 hr. (For comparison, the "heat of combustion" of gasoline is about 44 MJ/kg.)
battery | MJ/kg |
hay | ✕ larger than battery energy/mass |
gasoline | ✕ larger than hay energy/mass |
hydrogen | ✕ larger than gasoline energy/mass |
Given data,
Energy per mass of Hydrogen, EPMHy = 142 MJ/kg =
Energy per mass of Hay, EPMHa = 17 MJ/kg =
Energy per mass of Gasoline, EPMG = 44 MJ/kg =
mass of lead acid battery, m= 17kg
power that can be delivered by a lead acid battery, P = 1450 W
time taken to deliver the power by a lead acid battery, t = 1 hr = 3600 seconds
Trending now
This is a popular solution!
Step by step
Solved in 3 steps