In a science fiction movie, a spacecraft has a rotating section to provide artificial gravity for the long voyage. A physicist watches a scene filmed from the interior of the spacecraft and notices that the diameter of the rotating section of the craft is about five times the height of an astronaut walking in that section (or about 10 m). Later, in a scene showing the spacecraft from the exterior, she notices that the living quarters of the ship rotate with a period of about 30 s. Did the movie get the physics right? Compare the centripetal acceleration of a 1.7 m–tall astronaut at his feet to that at his head. Compare these accelerations to g. (Chap of Rotating frames of references)
In a science fiction movie, a spacecraft has a rotating section to provide artificial gravity for the long voyage. A physicist watches a scene filmed from the interior of the spacecraft and notices that the diameter of the rotating section of the craft is about five times the height of an astronaut walking in that section (or about 10 m). Later, in a scene showing the spacecraft from the exterior, she notices that the living quarters of the ship rotate with a period of about 30 s. Did the movie get the physics right? Compare the centripetal acceleration of a 1.7 m–tall astronaut at his feet to that at his head. Compare these accelerations to g.
(Chap of Rotating frames of references)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps