In a neutron star, gravity causes the electrons to combine with protons to form neutrons. A typical neutron star has a mass half that of the sun, compressed into a sphere of radius 20 km. If such a neutron star contains 6.0 × 1056 neutrons, calculate its density in grams per cubic centimeter.Compare this with the density inside a 232Th nucleus, in which 142 neutrons and 90 protons occupy a sphere of radius 9.1 × 10-13 cm. Take the mass of a neutron to be 1.675 × 10-24 g and that of a proton to be 1.673 × 10-24 g.
Nuclear Fusion
Nuclear fusion is a type of nuclear reaction. In nuclear fusion, two or more than two lighter atomic nuclei combine to form a heavier nucleus. During this process, an enormous amount of energy is released. This energy is called nuclear energy. Nuclear fusion is the energy source of the sun and stars.
Fusion Bomb
A fusion bomb is also known as a thermonuclear bomb or hydrogen bomb which releases a large amount of explosive energy during a nuclear chain reaction when the lighter nuclei in it, combine to form heavier nuclei, and a large amount of radiation is released. It is an uncontrolled, self-sustaining nuclear chain reaction where isotopes of hydrogen combine under very high temperature to form helium. They work on the principle of operation of atomic fusion. The isotopes of Hydrogen are deuterium and tritium, where they combine their masses and have greater mass than the product nuclei, get heated at high temperatures, and releases energy.
In a neutron star, gravity causes the electrons to combine with protons to form neutrons. A typical neutron star has a mass half that of the sun, compressed into a sphere of radius 20 km. If such a neutron star contains 6.0 × 1056 neutrons, calculate its density in grams per cubic centimeter.
Compare this with the density inside a 232Th nucleus, in which 142 neutrons and 90 protons occupy a sphere of radius 9.1 × 10-13 cm. Take the mass of a neutron to be 1.675 × 10-24 g and that of a proton to be 1.673 × 10-24 g.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 5 images