In a demonstration, Mr. H stretches a steel wire to a length 1.23 meters and braces both ends so that they are not free to vibrate. He attaches a fancy piece of equipment which he calls a mechanical oscillator to the wire and explains how it works. Then Mr. H turns the oscillator on and tunes the frequency to 588 Hz. To the amazement of the class, the wire begins vibrating in the sixth harmonic wave pattern.a. Determine the speed of waves within the wire.b. Determine the frequency at which the wire will vibrate with the first harmonic wave pattern.c. Determine the frequency at which the wire will vibrate with the second harmonic wave pattern.
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
In a demonstration, Mr. H stretches a steel wire to a length 1.23 meters and braces both ends so that they are not free to vibrate. He attaches a fancy piece of equipment which he calls a mechanical oscillator to the wire and explains how it works. Then Mr. H turns the oscillator on and tunes the frequency to 588 Hz. To the amazement of the class, the wire begins vibrating in the sixth harmonic wave pattern.
a. Determine the speed of waves within the wire.
b. Determine the frequency at which the wire will vibrate with the first harmonic wave pattern.
c. Determine the frequency at which the wire will vibrate with the second harmonic wave pattern.
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 5 images