In a commonly used model of the atmosphere, the atmospheric pressure varies with altitude, h, according to the barometric formula:p = p0e–h/Hwhere p0 is the pressure at sea level and H is a constant approximately equal to 8 km. More specifically, H = RT/Mg, where M is the average molar mass of air and T is the temperature at the altitude h. This formula represents the outcome of the competition between the potential energy of the molecules in the gravitational field of the Earth and the stirring effects of thermal motion. Derive this relation by showing that the change in pressure dp for an infinitesimal change in altitude dh where the mass density is ρ is dp = −ρgdh. Remember that ρ depends on the pressure. Evaluate (a) the pressure difference between the top and bottom of a laboratory vessel of height 15 cm, and (b) the external atmospheric pressure at a typical cruising altitude of an aircraft (11 km) when the pressure at ground level is 1.0 atm.
In a commonly used model of the atmosphere, the atmospheric pressure varies with altitude, h, according to the barometric formula:
p = p0e–h/H
where p0 is the pressure at sea level and H is a constant approximately equal to 8 km. More specifically, H = RT/Mg, where M is the average molar mass of air and T is the temperature at the altitude h. This formula represents the outcome of the competition between the potential energy of the molecules in the gravitational field of the Earth and the stirring effects of thermal motion. Derive this relation by showing that the change in pressure dp for an infinitesimal change in altitude dh where the mass density is ρ is dp = −ρgdh. Remember that ρ depends on the pressure. Evaluate (a) the pressure difference between the top and bottom of a laboratory vessel of height 15 cm, and (b) the external atmospheric pressure at a typical cruising altitude of an aircraft (11 km) when the pressure at ground level is 1.0 atm.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images