In a certain vacuum tube, electrons evaporate from a hot cathode at a slow, steady rate and accelerate from rest through a potential difference of 45.0 V. Then they travel 28.0 cm as they pass through an array of slits and fall on a screen to produce an interference pattern. If the beam current is below a certain value, only one electron at a time will be in flight in the tube. In this situation, the interference pattern still appears, showing that each individual electron can interfere with itself. What is the maximum value for the beam current that will result in only one electron at a time in flight in the tube?

icon
Related questions
Question
100%
In a certain vacuum tube, electrons evaporate from a hot cathode at a slow, steady rate and accelerate from
rest through a potential difference of 45.0 V. Then they travel 28.0 cm as they pass through an array of slits
and fall on a screen to produce an interference pattern. If the beam current is below a certain value, only
one electron at a time will be in flight in the tube. In this situation, the interference pattern still appears,
showing that each individual electron can interfere with itself. What is the maximum value for the beam
current that will result in only one electron at a time in flight in the tube?
Transcribed Image Text:In a certain vacuum tube, electrons evaporate from a hot cathode at a slow, steady rate and accelerate from rest through a potential difference of 45.0 V. Then they travel 28.0 cm as they pass through an array of slits and fall on a screen to produce an interference pattern. If the beam current is below a certain value, only one electron at a time will be in flight in the tube. In this situation, the interference pattern still appears, showing that each individual electron can interfere with itself. What is the maximum value for the beam current that will result in only one electron at a time in flight in the tube?
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions