In 2014, Congress cut $8.7 billion from the Supplemental Nutrition Assistance Program (SNAP), more commonly referred to as food stamps. The rationale for the decrease is that providing assistance to people will result in the next generation of citizens being more depend- ent on the government for support. Hoynes (2012) describes a study to evaluate this claim. The study examines 60,782 families over the time period of 1968 to 2009 which is subsequent to the introduction of the Food Stamp Program in 1961. This study examines the impact of a posi- tive and policy-driven change in economic resources available in utero and during childhood on the economic health of individuals in adulthood. The study assembled data linking family background in early childhood to adult health and economic outcomes. The study concluded that the Food Stamp Program has effects decades after initial exposure. Specifically, access to food stamps in childhood leads to a significant reduction in the incidence of metabolic syndrome (obesity, high blood pressure, and diabetes) and, for women, an increase in eco- nomic self-sufficiency. Overall, the results suggest substantial internal and external benefits of SNAP. a. Identify the population that is of interest to the researchers. b. Describe the sample. c. What characteristics of the population are of interest to the researchers? foronces about the nonulation
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
1.3 question
part A,B,C
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images