import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split [] from keras.datasets import fashion_mnist (train_X, train_y), (test_X, test y) = fashion_mnist.load_data() fig = plt.figure(figsize=(10,7)) for i in range (15): ax fig.add_subplot (3, 5, i+1) ax.imshow (train_X[i], cmap= 'viridis') ax.set_title('Label (y): {y}'.format(y=train_y[i])) plt.axis ('off') Label (y): 9 Label (y): 2 Label (y): 0 Label (y): 3 TIXX Label (y): 0 Label (y): 7 Label (y): 2 Label (y): 5 Label (y): 0 Label (y): 5

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Please implement Multinomial Logistic Regression on the following data. Please continue from the given code:

 

E
R
x}
>
Label (y): 2
Label (y): 0
[ ] train_X.shape
(60000, 28, 28)
Label (y): 7
Label (y): 9
A
Label (y): 2
Label (y): 5
Label (y): 5
Label (y): 5
A A
Label (y): 7
Label (y): 5
Transcribed Image Text:E R x} > Label (y): 2 Label (y): 0 [ ] train_X.shape (60000, 28, 28) Label (y): 7 Label (y): 9 A Label (y): 2 Label (y): 5 Label (y): 5 Label (y): 5 A A Label (y): 7 Label (y): 5
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
[] from keras.datasets import fashion_mnist
(train_X, train_y), (test_X, test_y) = fashion_mnist.load_data()
fig = plt.figure(figsize=(10,7))
for i in range (15):
ax fig.add_subplot (3, 5, i+1)
ax.imshow (train_X[i], cmap= 'viridis')
ax.set_title('Label (y): {y}'.format(y=train_y[i]))
plt.axis ('off')
Label (y): 9
Label (y): 2
Label (y): 0
Label (y): 7
Label (y): 0
Label (y): 2
Label (y): 3
Label (y): 5
Label (y): 0
Label (y): 5
Transcribed Image Text:import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split [] from keras.datasets import fashion_mnist (train_X, train_y), (test_X, test_y) = fashion_mnist.load_data() fig = plt.figure(figsize=(10,7)) for i in range (15): ax fig.add_subplot (3, 5, i+1) ax.imshow (train_X[i], cmap= 'viridis') ax.set_title('Label (y): {y}'.format(y=train_y[i])) plt.axis ('off') Label (y): 9 Label (y): 2 Label (y): 0 Label (y): 7 Label (y): 0 Label (y): 2 Label (y): 3 Label (y): 5 Label (y): 0 Label (y): 5
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Representation of Polynomial
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education