If x + 2xy-y² = 2, MİN 0⁰ O at the point (1, 1), is: dx nonexistent

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculus Problem: Implicit Differentiation

Given the implicit equation of a curve:

\[ x^2 + 2xy - y^2 = 2, \]

we are asked to find the derivative \(\frac{dy}{dx}\) at the point (1, 1).

**Options:**

- \(\frac{3}{2}\)
- \(0\)
- \(-\frac{3}{2}\)
- nonexistent (This option is selected)

To solve this, we typically use implicit differentiation to find \(\frac{dy}{dx}\):

1. Differentiate both sides of the given equation with respect to \(x\):
   
   \[
   \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) - \frac{d}{dx}(y^2) = \frac{d}{dx}(2)
   \]

2. Apply the differentiation rules:
   
   \[
   2x + 2\left(x \frac{dy}{dx} + y \right) - 2y \frac{dy}{dx} = 0
   \]

3. Simplify to find \(\frac{dy}{dx}\):
   
   \[
   2x + 2x \frac{dy}{dx} + 2y - 2y \frac{dy}{dx} = 0
   \]

   \[
   2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0
   \]

   \[
   2x + 2y = 2y \frac{dy}{dx} - 2x \frac{dy}{dx}
   \]

   Factor out \(\frac{dy}{dx}\):
   
   \[
   2x + 2y = (2y - 2x) \frac{dy}{dx}
   \]

   \[
   \frac{dy}{dx} = \frac{2x + 2y}{2y - 2x}
   \]

4. Substitute the point (1, 1) into the derived formula for \(\frac{dy}{dx}\):

   \[
   \frac{dy}{dx} = \frac{2(1) + 2(1)}{2(
Transcribed Image Text:### Calculus Problem: Implicit Differentiation Given the implicit equation of a curve: \[ x^2 + 2xy - y^2 = 2, \] we are asked to find the derivative \(\frac{dy}{dx}\) at the point (1, 1). **Options:** - \(\frac{3}{2}\) - \(0\) - \(-\frac{3}{2}\) - nonexistent (This option is selected) To solve this, we typically use implicit differentiation to find \(\frac{dy}{dx}\): 1. Differentiate both sides of the given equation with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(2xy) - \frac{d}{dx}(y^2) = \frac{d}{dx}(2) \] 2. Apply the differentiation rules: \[ 2x + 2\left(x \frac{dy}{dx} + y \right) - 2y \frac{dy}{dx} = 0 \] 3. Simplify to find \(\frac{dy}{dx}\): \[ 2x + 2x \frac{dy}{dx} + 2y - 2y \frac{dy}{dx} = 0 \] \[ 2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \] \[ 2x + 2y = 2y \frac{dy}{dx} - 2x \frac{dy}{dx} \] Factor out \(\frac{dy}{dx}\): \[ 2x + 2y = (2y - 2x) \frac{dy}{dx} \] \[ \frac{dy}{dx} = \frac{2x + 2y}{2y - 2x} \] 4. Substitute the point (1, 1) into the derived formula for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{2(1) + 2(1)}{2(
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning