If there are 4 levels,  m1 = 102.32 ton, m2 = 23.72 ton, m3 = 9.63 ton, m4 = 4.42 ton k1 = 4.31 kN/m, k2 = 19.7 kN/m, k3 = 30.19 kN/m, k4 = 36.44 kN/m a1 = 1 1. Determine the three modal frequencies and periods 2. Determine the normalized mode shape factors 3. Draw the mode shapes 4. Determine the participation factors

Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
5th Edition
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Saeed Moaveni
Chapter9: Mass And Mass-related Variables In Engineering
Section: Chapter Questions
Problem 3P: Determine the specific gravity of the following materials: gold ( = 1208 lb/ft3), platinum ( = 1340...
icon
Related questions
icon
Concept explainers
Question

If there are 4 levels, 
m1 = 102.32 ton, m2 = 23.72 ton, m3 = 9.63 ton, m4 = 4.42 ton
k1 = 4.31 kN/m, k2 = 19.7 kN/m, k3 = 30.19 kN/m, k4 = 36.44 kN/m
a1 = 1

1. Determine the three modal frequencies and periods
2. Determine the normalized mode shape factors
3. Draw the mode shapes
4. Determine the participation factors

reference: pictures attached

m3 = 65.26 ton
m₂ = 138.68 ton
m₁ = 157.85 ton
m₁ = 157.85 ton
m2 = 138.68 ton
m3 = 65.26 ton
= 0.158
= 0.139
kN.s2
Equilibrium of mass 1:
-m₁ü1-K₁U1 + k2(U1 + U₂) = 0
m₁ü1 + (K1 + K2)U1 - K2U2 = 0
= 0.0653
mm
kN.s2
mm
kN.s2
mm
k3 = 71.034
k₂
= 89.931
k₁ = 57.081
ZEZE
kN
kN
m
kN
m
kN
mm
kN
mm
k₁= 57080.65
k2 = 89930.68
K3 = 71034.28 =71.034
kN
mm
Equilibrium of mass 3:
-M3Ü3-K3(U3 - U₂) = 0
MÇÜ3 + K3(U3 - U2) = 0
= 57.081
=89.931
KN
mm
KN
mm
KN
mm
3
K₂U₂
-K₂ U₁
U₁
ki
k₁ (U₂-U₁)
k₁U₁
det
[m] =
det
m₂
0
m₂Ü₁
Equilibrium of mass 2:
-m₂Ü2-K₂(U₂-U₁) + K3(U3-U2) = 0
m2Ü2 + k2u2 - k2u1 - K3U3+ k3U2 = 0
m2Ü2 + (k2 + K3)U2 - K2u1 - K3U3 = 0
0
-k₂
0
0
1. Mass and Stiffness Matrices
[m, 0 0 U₁ [k₁ + K₂
0 Ü₂} +
m3] (03
[0.158
0
0
[147.012
0
0
0
0.139
0 0.0653
-89.931
0
[k] =-89.931 160.965 -71.034
0
-71.034 71.034
2. Period and Modal Frequencies
[k₁+k₂ m₁Wn²
-k₂
0
k₂ (U₂-U₁)
U₂-U₁
-89.931
0
[147.012 0.158Wn2
K₂
Wn²2 = 995.06
Wn²3= 2060.32
k₂ (U₂ - U₁)
kN.s²
mm
-k₂
k₂ + k3 k3 U₂ =
-K3
-K₂
k₂ + k3 m₂Wn²
-K3
kz (Uz - U₂)
◄ M₂Ü₂
KN
mm
-89.931
kz (Uz - U₂)
k₂
rad
Uz - U₂
160.965 0.139Wn2
18-8
k₂ (U₂ - U₂)
0
-K3
k3 m3Wn²]
K₂ (Uz - U₂)
-71.034
71.034 0.0653Wn2]
[(147.012 -0.158Wn2) (160.865 -0.139Wn2) (71.034 -0.0653Wn2) + 0
+0]
- [(0) + (147.012 -0.158Wn2)(-71.034) (-71.034) + (71.034
-0.0653Wn2)] = 0
(0.001429Wn6 + 4.544Wn4-3473.084Wn² + 1680931.963)
- (1324.282Wn² + 1316291.575) = 0
-1.429x10-3(Wn²)³ + 4.544(Wn²)2-3473.084Wn² + 364640.388 = 0
Wn² = 124.47
Tn₁ = 0.5630 s
Wn₁ = 11.16
Wn2= 31.54 rad
S
Wn3 = 45.39 rad
0
-71.034
◄
Tn₂ = 0.1992 s
Tn30.1384 s
Mz üz
k₂ (Uz - U₂)
2
4
Transcribed Image Text:m3 = 65.26 ton m₂ = 138.68 ton m₁ = 157.85 ton m₁ = 157.85 ton m2 = 138.68 ton m3 = 65.26 ton = 0.158 = 0.139 kN.s2 Equilibrium of mass 1: -m₁ü1-K₁U1 + k2(U1 + U₂) = 0 m₁ü1 + (K1 + K2)U1 - K2U2 = 0 = 0.0653 mm kN.s2 mm kN.s2 mm k3 = 71.034 k₂ = 89.931 k₁ = 57.081 ZEZE kN kN m kN m kN mm kN mm k₁= 57080.65 k2 = 89930.68 K3 = 71034.28 =71.034 kN mm Equilibrium of mass 3: -M3Ü3-K3(U3 - U₂) = 0 MÇÜ3 + K3(U3 - U2) = 0 = 57.081 =89.931 KN mm KN mm KN mm 3 K₂U₂ -K₂ U₁ U₁ ki k₁ (U₂-U₁) k₁U₁ det [m] = det m₂ 0 m₂Ü₁ Equilibrium of mass 2: -m₂Ü2-K₂(U₂-U₁) + K3(U3-U2) = 0 m2Ü2 + k2u2 - k2u1 - K3U3+ k3U2 = 0 m2Ü2 + (k2 + K3)U2 - K2u1 - K3U3 = 0 0 -k₂ 0 0 1. Mass and Stiffness Matrices [m, 0 0 U₁ [k₁ + K₂ 0 Ü₂} + m3] (03 [0.158 0 0 [147.012 0 0 0 0.139 0 0.0653 -89.931 0 [k] =-89.931 160.965 -71.034 0 -71.034 71.034 2. Period and Modal Frequencies [k₁+k₂ m₁Wn² -k₂ 0 k₂ (U₂-U₁) U₂-U₁ -89.931 0 [147.012 0.158Wn2 K₂ Wn²2 = 995.06 Wn²3= 2060.32 k₂ (U₂ - U₁) kN.s² mm -k₂ k₂ + k3 k3 U₂ = -K3 -K₂ k₂ + k3 m₂Wn² -K3 kz (Uz - U₂) ◄ M₂Ü₂ KN mm -89.931 kz (Uz - U₂) k₂ rad Uz - U₂ 160.965 0.139Wn2 18-8 k₂ (U₂ - U₂) 0 -K3 k3 m3Wn²] K₂ (Uz - U₂) -71.034 71.034 0.0653Wn2] [(147.012 -0.158Wn2) (160.865 -0.139Wn2) (71.034 -0.0653Wn2) + 0 +0] - [(0) + (147.012 -0.158Wn2)(-71.034) (-71.034) + (71.034 -0.0653Wn2)] = 0 (0.001429Wn6 + 4.544Wn4-3473.084Wn² + 1680931.963) - (1324.282Wn² + 1316291.575) = 0 -1.429x10-3(Wn²)³ + 4.544(Wn²)2-3473.084Wn² + 364640.388 = 0 Wn² = 124.47 Tn₁ = 0.5630 s Wn₁ = 11.16 Wn2= 31.54 rad S Wn3 = 45.39 rad 0 -71.034 ◄ Tn₂ = 0.1992 s Tn30.1384 s Mz üz k₂ (Uz - U₂) 2 4
3. Normalized Mode Shape Factor; a₁ = 1
rad
Wn₁ 11.165
[127.352 -89.931
0
-89.931 143.693 -71.034
0
-71.034 62.906
127.352-89.931 (az) + 0 = 0
az 1.416
Wn₂ = 31.54 rad
s
[-10.013 -89.931
-89.931 23.010
0 -71.034
0
-71.034
6.115
-10.013-89.931(az) + 0 = 0
a2 = -0.111
Wn3 = 45.39 rad
a2 = -1.982
[M] = [+]¹[m][4] =
. Modal Matrix
1
1
1
[] 1.416 -0.111 -1.982
1.598 -1.302 2.215
-178.199 -89.931
a₁
-89.931 -124.751 -71.034a2 = (3) =a₂ = -1.982
0
2.215
-71.034 -63.418]
-178.199-89.931(a2) + 0 = 0
-89.931-124.751(a2) -71.034(a3) = 0
[M]
[K] = [+]¹[k][4] =
[₁][m]1)
[₁][m][₁]
10
Ts =
38-8-8-
Tn1 0.563
Ts 0.56
1.416
1.598 10.158 0
1
1
-0.111 -1.302 0 0.139 0.001416
1.416 -0.111 -1.982
-1.982 2.215
0
0
-1.302 2.215
6. Peak Displacement
Cv = 0.56; Ca = 0.4; 1 = 1.5
C₂ 0.56
= 0.56
2.5Ca 2.5(0.4)
}-{8}
=
{1}=a2=1.416
(a3 (1.598)
-89.931+ 143.693(az) -71.034(a3) = 0
a 1.598
A₁ 14637
D₁ =
124.47
Wn²₁
D₂=A₂ 14715
Wn²₂
995.06
14715
Wn² 2060.32
D3=A₁ =
0
1
1.416 1.598 1[147.012 -89.931
1
1
-0.111 -1.302-89.931 160.965 -71.034 1.416 -0.111 -1.982
11 -1.982 2.215
0 -71.034 71.034 1.598 -1.302 2.215
[74.997 0.120 -0.220
[K] = 0.120 268.845 -0.0499
-0.220 -0.0499 2108.027]
-89.931 +23.010(az) -71.034(a3) = 0
a3 = -1.302
Tn2
Ts
a3 = 2.215
0.603 2.9x10-4 -9.7x10-41
2.9x10-4
0.27 2.6x10-4
-9.7x104 2.6x10-4 1.024
[1 -1.982 2.215]
[0.158
[11.982 2.215] 0
0
[0.158
= 14.788 mm
0.1992
0.56
= 7.142 mm
0
0
1
0
0.139 0
0
0.06531
= 1.01 <1
0.56
0.563
A₁ = =19= (1.5) (9.81) 14.637 = 14637mm
s²
A₂ = 2.5Calg = 2.5(0.4)(1.5)(9.81)= 14.715 = 14715
= 0.356 < 1
• Maximum Floor Displacement
[uo] = [+][r][D]
0.139
0
-1.982
0 0.0653 2.215
A3 = 2.5Calg = 2.5(0.4)(1.5) (9.81)= 14.715=14715
• Maximum Spectral Design
= 117.595 mm
mm
kN²
0.111
Tn3 0.1384
Ts
0.56
0.027
1.024
=
mm
$²
s²
= 0.026
1
89.490
[u₁] = [₁][₁][D₂] = 1.416 [0.761][117.595] = 126.718 mm
1.598]
[143.005)
1
3.179
[u₂] = [₂][₂][D₂] = -0.111 [0.215][14.788] = -0.353 mm
-1.302]
1
-4.140.
0.186
[us] = [3][[₂][D₂] = -1.982 [0.026] [7.142] =-0.368 mm
2.215
0.411.
• Peak Displacement at each level
Uimax=√√(89.49)2 + (3.179)2 + (0.186)² = 89.547 mm
U2max=√√(126.718)² + (-0.353)² + (-0.368)² = 126.719 mm
U3max=√(143.005)² + (-4.14)² + (0.411)² = 143.066 mm
5
= 0.247 < 1
7
[0.158
0
0
4. Draw Mode Shape
Mode 1:
1
(₁) a2 1.416
(a3) (1.598)
0
0.139
0
Mode 2:
(2)=a2=-0.111
(a3)
Mode 3:
(3)=a2
(a3)
{₁}=
5. Participation Factor
[₁ = ₁³(m][1]
[₁]¹[m][:]
[₂=
.302)
-1.982
2.215
[₂] [m][1]
[₂] [m][₂]
=1.416 {$₂2) =
(1.598)
[1
1 1416 1.598] 0
[0.158
[1 1416 1.598] 0
0
-8--8--
1.302)
=
[0.158 0
0.139
0
0.139
0
{Vb} = {f}{1}
[1759.924 2192.375
{Vb} = 499.869 -48.813
[0.158
0
[1 -0.111 -1.302 0 0.139
0
0
1.598
0.158
-0.111-1.302] 0 0.139
0
0
1.416
0
0
0.0653 1
0
1
0
1.416
0.0653 1.598
2215
0.459
0.60 0.761
7. Maximum Equivalent Static Floor Forces
[f] = [m][4][r][A]
[f] =
0
0
0.065311
01
0
0 -0.111
0.0653-1.302
0.058
0.270
-1.982
2.215)
0
1 [0.761 0
1
0 1.416 -0.111 -1.982 0 0.215
0.0653] [1.598 -1.302 2.215 0
0
1₁4
0
0
14715]
= 0.215
[14637 0
0 14715
0
60.449
0
[1759.924
499.869
[f] =2192.375 -48.813 -105.403 kN
55.338
1152.14 -268.982
fimax = √√(1759.924)² + (499.869)² + (60.449)² = 1830.534 KN
f2max=√√(2192.375)² + (−48.813)² + (−105.403)² = 2195.45 KN
f3max = √√(1152.14)² + (−268.982)² + (55.338)² = 1184.416 KN
8. Maximum Base Shear
1152.14
-268.982
60.449 -105.403 55.338
18-1
[5104.799]
= 182.074 kN
10.384
Vomax=√√(5104.799)² + (182.074)² + (10.384)² = 5108.056 kN
6
0
0
0.026]
8
Transcribed Image Text:3. Normalized Mode Shape Factor; a₁ = 1 rad Wn₁ 11.165 [127.352 -89.931 0 -89.931 143.693 -71.034 0 -71.034 62.906 127.352-89.931 (az) + 0 = 0 az 1.416 Wn₂ = 31.54 rad s [-10.013 -89.931 -89.931 23.010 0 -71.034 0 -71.034 6.115 -10.013-89.931(az) + 0 = 0 a2 = -0.111 Wn3 = 45.39 rad a2 = -1.982 [M] = [+]¹[m][4] = . Modal Matrix 1 1 1 [] 1.416 -0.111 -1.982 1.598 -1.302 2.215 -178.199 -89.931 a₁ -89.931 -124.751 -71.034a2 = (3) =a₂ = -1.982 0 2.215 -71.034 -63.418] -178.199-89.931(a2) + 0 = 0 -89.931-124.751(a2) -71.034(a3) = 0 [M] [K] = [+]¹[k][4] = [₁][m]1) [₁][m][₁] 10 Ts = 38-8-8- Tn1 0.563 Ts 0.56 1.416 1.598 10.158 0 1 1 -0.111 -1.302 0 0.139 0.001416 1.416 -0.111 -1.982 -1.982 2.215 0 0 -1.302 2.215 6. Peak Displacement Cv = 0.56; Ca = 0.4; 1 = 1.5 C₂ 0.56 = 0.56 2.5Ca 2.5(0.4) }-{8} = {1}=a2=1.416 (a3 (1.598) -89.931+ 143.693(az) -71.034(a3) = 0 a 1.598 A₁ 14637 D₁ = 124.47 Wn²₁ D₂=A₂ 14715 Wn²₂ 995.06 14715 Wn² 2060.32 D3=A₁ = 0 1 1.416 1.598 1[147.012 -89.931 1 1 -0.111 -1.302-89.931 160.965 -71.034 1.416 -0.111 -1.982 11 -1.982 2.215 0 -71.034 71.034 1.598 -1.302 2.215 [74.997 0.120 -0.220 [K] = 0.120 268.845 -0.0499 -0.220 -0.0499 2108.027] -89.931 +23.010(az) -71.034(a3) = 0 a3 = -1.302 Tn2 Ts a3 = 2.215 0.603 2.9x10-4 -9.7x10-41 2.9x10-4 0.27 2.6x10-4 -9.7x104 2.6x10-4 1.024 [1 -1.982 2.215] [0.158 [11.982 2.215] 0 0 [0.158 = 14.788 mm 0.1992 0.56 = 7.142 mm 0 0 1 0 0.139 0 0 0.06531 = 1.01 <1 0.56 0.563 A₁ = =19= (1.5) (9.81) 14.637 = 14637mm s² A₂ = 2.5Calg = 2.5(0.4)(1.5)(9.81)= 14.715 = 14715 = 0.356 < 1 • Maximum Floor Displacement [uo] = [+][r][D] 0.139 0 -1.982 0 0.0653 2.215 A3 = 2.5Calg = 2.5(0.4)(1.5) (9.81)= 14.715=14715 • Maximum Spectral Design = 117.595 mm mm kN² 0.111 Tn3 0.1384 Ts 0.56 0.027 1.024 = mm $² s² = 0.026 1 89.490 [u₁] = [₁][₁][D₂] = 1.416 [0.761][117.595] = 126.718 mm 1.598] [143.005) 1 3.179 [u₂] = [₂][₂][D₂] = -0.111 [0.215][14.788] = -0.353 mm -1.302] 1 -4.140. 0.186 [us] = [3][[₂][D₂] = -1.982 [0.026] [7.142] =-0.368 mm 2.215 0.411. • Peak Displacement at each level Uimax=√√(89.49)2 + (3.179)2 + (0.186)² = 89.547 mm U2max=√√(126.718)² + (-0.353)² + (-0.368)² = 126.719 mm U3max=√(143.005)² + (-4.14)² + (0.411)² = 143.066 mm 5 = 0.247 < 1 7 [0.158 0 0 4. Draw Mode Shape Mode 1: 1 (₁) a2 1.416 (a3) (1.598) 0 0.139 0 Mode 2: (2)=a2=-0.111 (a3) Mode 3: (3)=a2 (a3) {₁}= 5. Participation Factor [₁ = ₁³(m][1] [₁]¹[m][:] [₂= .302) -1.982 2.215 [₂] [m][1] [₂] [m][₂] =1.416 {$₂2) = (1.598) [1 1 1416 1.598] 0 [0.158 [1 1416 1.598] 0 0 -8--8-- 1.302) = [0.158 0 0.139 0 0.139 0 {Vb} = {f}{1} [1759.924 2192.375 {Vb} = 499.869 -48.813 [0.158 0 [1 -0.111 -1.302 0 0.139 0 0 1.598 0.158 -0.111-1.302] 0 0.139 0 0 1.416 0 0 0.0653 1 0 1 0 1.416 0.0653 1.598 2215 0.459 0.60 0.761 7. Maximum Equivalent Static Floor Forces [f] = [m][4][r][A] [f] = 0 0 0.065311 01 0 0 -0.111 0.0653-1.302 0.058 0.270 -1.982 2.215) 0 1 [0.761 0 1 0 1.416 -0.111 -1.982 0 0.215 0.0653] [1.598 -1.302 2.215 0 0 1₁4 0 0 14715] = 0.215 [14637 0 0 14715 0 60.449 0 [1759.924 499.869 [f] =2192.375 -48.813 -105.403 kN 55.338 1152.14 -268.982 fimax = √√(1759.924)² + (499.869)² + (60.449)² = 1830.534 KN f2max=√√(2192.375)² + (−48.813)² + (−105.403)² = 2195.45 KN f3max = √√(1152.14)² + (−268.982)² + (55.338)² = 1184.416 KN 8. Maximum Base Shear 1152.14 -268.982 60.449 -105.403 55.338 18-1 [5104.799] = 182.074 kN 10.384 Vomax=√√(5104.799)² + (182.074)² + (10.384)² = 5108.056 kN 6 0 0 0.026] 8
Expert Solution
steps

Step by step

Solved in 10 steps with 16 images

Blurred answer
Knowledge Booster
Open channel flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Engineering Fundamentals: An Introduction to Engi…
Engineering Fundamentals: An Introduction to Engi…
Civil Engineering
ISBN:
9781305084766
Author:
Saeed Moaveni
Publisher:
Cengage Learning
Materials Science And Engineering Properties
Materials Science And Engineering Properties
Civil Engineering
ISBN:
9781111988609
Author:
Charles Gilmore
Publisher:
Cengage Learning
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Fundamentals Of Construction Estimating
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:
9781337399395
Author:
Pratt, David J.
Publisher:
Cengage,