If sec(8) = -3, and is in the second quadrant, find tan 8. 10 O 2√2 O-√10 O-2√2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Trigonometric Problem

#### Problem Statement:
If \( \sec(\theta) = -3 \), and \( \theta \) is in the second quadrant, find \( \tan(\theta) \).

#### Multiple Choice Answers:
- \( \sqrt{10} \)
- \( 2\sqrt{2} \)
- \( -\sqrt{10} \)
- \( -2\sqrt{2} \)

To solve this problem, follow these steps:

1. **Recall the Definition of Secant:**
   \[
   \sec(\theta) = \frac{1}{\cos(\theta)}
   \]

2. **Isolate \( \cos(\theta) \):**
   \[
   \cos(\theta) = \frac{1}{\sec(\theta)} = \frac{1}{-3} = -\frac{1}{3}
   \]

3. **Use the Pythagorean Identity to Find \( \sin(\theta) \):**
   \[
   \cos^2(\theta) + \sin^2(\theta) = 1 
   \]
   \[
   \left(-\frac{1}{3}\right)^2 + \sin^2(\theta) = 1 
   \]
   \[
   \frac{1}{9} + \sin^2(\theta) = 1 
   \]
   \[
   \sin^2(\theta) = 1 - \frac{1}{9} 
   \]
   \[
   \sin^2(\theta) = \frac{9}{9} - \frac{1}{9} 
   \]
   \[
   \sin^2(\theta) = \frac{8}{9}
   \]
   \[
   \sin(\theta) = \pm \sqrt{\frac{8}{9}} = \pm \frac{\sqrt{8}}{3} = \pm \frac{2\sqrt{2}}{3}
   \]

   Since \( \theta \) is in the second quadrant, \( \sin(\theta) \) must be positive:
   \[
   \sin(\theta) = \frac{2\sqrt{2}}{3}
   \]

4. **Compute \( \tan(\theta) \):**
   \[
   \tan(\theta) = \frac{\sin
Transcribed Image Text:### Trigonometric Problem #### Problem Statement: If \( \sec(\theta) = -3 \), and \( \theta \) is in the second quadrant, find \( \tan(\theta) \). #### Multiple Choice Answers: - \( \sqrt{10} \) - \( 2\sqrt{2} \) - \( -\sqrt{10} \) - \( -2\sqrt{2} \) To solve this problem, follow these steps: 1. **Recall the Definition of Secant:** \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] 2. **Isolate \( \cos(\theta) \):** \[ \cos(\theta) = \frac{1}{\sec(\theta)} = \frac{1}{-3} = -\frac{1}{3} \] 3. **Use the Pythagorean Identity to Find \( \sin(\theta) \):** \[ \cos^2(\theta) + \sin^2(\theta) = 1 \] \[ \left(-\frac{1}{3}\right)^2 + \sin^2(\theta) = 1 \] \[ \frac{1}{9} + \sin^2(\theta) = 1 \] \[ \sin^2(\theta) = 1 - \frac{1}{9} \] \[ \sin^2(\theta) = \frac{9}{9} - \frac{1}{9} \] \[ \sin^2(\theta) = \frac{8}{9} \] \[ \sin(\theta) = \pm \sqrt{\frac{8}{9}} = \pm \frac{\sqrt{8}}{3} = \pm \frac{2\sqrt{2}}{3} \] Since \( \theta \) is in the second quadrant, \( \sin(\theta) \) must be positive: \[ \sin(\theta) = \frac{2\sqrt{2}}{3} \] 4. **Compute \( \tan(\theta) \):** \[ \tan(\theta) = \frac{\sin
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning