Let a and b be positive numbers. Evaluate sin (tan O 60 b a² +6² a (tan-¹ (7)). √a² +6² √a² +6² a² +6² /a² +6² b

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
Question
**Problem Statement:**

Let \( a \) and \( b \) be positive numbers. Evaluate \( \sin \left( \tan^{-1} \left( \frac{a}{b} \right) \right) \).

**Options:**

- \( \frac{b}{\sqrt{a^2 + b^2}} \)
- \( \frac{b}{a} \)
- \( \frac{a}{\sqrt{a^2 + b^2}} \) (Selected answer)
- \( \frac{\sqrt{a^2 + b^2}}{a^2 + b^2} \)
- \( \frac{\sqrt{a^2 + b^2}}{b} \)

**Explanation:**

The problem involves finding the sine of the angle whose tangent is the ratio \( \frac{a}{b} \). To solve this, consider a right triangle where \( a \) is the opposite side and \( b \) is the adjacent side. The hypotenuse of the triangle can be found using the Pythagorean theorem: \( \sqrt{a^2 + b^2} \).

Thus:

\[ \sin \left( \tan^{-1} \left( \frac{a}{b} \right) \right) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{\sqrt{a^2 + b^2}} \]

So, the correct option is:

\[ \frac{a}{\sqrt{a^2 + b^2}} \]
Transcribed Image Text:**Problem Statement:** Let \( a \) and \( b \) be positive numbers. Evaluate \( \sin \left( \tan^{-1} \left( \frac{a}{b} \right) \right) \). **Options:** - \( \frac{b}{\sqrt{a^2 + b^2}} \) - \( \frac{b}{a} \) - \( \frac{a}{\sqrt{a^2 + b^2}} \) (Selected answer) - \( \frac{\sqrt{a^2 + b^2}}{a^2 + b^2} \) - \( \frac{\sqrt{a^2 + b^2}}{b} \) **Explanation:** The problem involves finding the sine of the angle whose tangent is the ratio \( \frac{a}{b} \). To solve this, consider a right triangle where \( a \) is the opposite side and \( b \) is the adjacent side. The hypotenuse of the triangle can be found using the Pythagorean theorem: \( \sqrt{a^2 + b^2} \). Thus: \[ \sin \left( \tan^{-1} \left( \frac{a}{b} \right) \right) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{\sqrt{a^2 + b^2}} \] So, the correct option is: \[ \frac{a}{\sqrt{a^2 + b^2}} \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning