If left to freely oscillate, a system will vibrate at a natural frequency that depends on the system itself, not on the initial push or stimulus that we impart. Based on this reasoning, consider a beam made out of iron and an otherwise identical beam made out of aluminum. How should the natural frequency of vibration of these two beams compare? (Hint: look at the relative mass of these two elements on the periodic table and imagine that the atoms are connected by springs.)
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
If left to freely oscillate, a system will vibrate at a natural frequency that depends on the system itself, not on the initial push or stimulus that we impart. Based on this reasoning, consider a beam made out of iron and an otherwise identical beam made out of aluminum. How should the natural frequency of vibration of these two beams compare? (Hint: look at the relative mass of these two elements on the periodic table and imagine that the atoms are connected by springs.)
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images