If Force = (-2,4) and Displacement = (-5,-3), find the angle in degrees between the two %3D vectors. O 16 deg O 160 deg O 51 deg O 94.4 deg O 24.8 deg

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
**Problem Statement:**

If Force = \((-2, 4)\) and Displacement = \((-5, -3)\), find the angle in degrees between the two vectors.

**Options:**

- 16 degrees
- 160 degrees
- 51 degrees
- 94.4 degrees
- 24.8 degrees

**Solution Explanation:**

To find the angle \(\theta\) between two vectors \(\mathbf{A}\) and \(\mathbf{B}\), use the dot product formula:

\[
\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos(\theta)
\]

Where:
- \(\mathbf{A} \cdot \mathbf{B}\) is the dot product of \(\mathbf{A}\) and \(\mathbf{B}\),
- \(|\mathbf{A}|\) and \(|\mathbf{B}|\) are the magnitudes of \(\mathbf{A}\) and \(\mathbf{B}\),
- \(\theta\) is the angle between \(\mathbf{A}\) and \(\mathbf{B}\).

**Steps:**

1. **Calculate the dot product**:  
   \[
   \mathbf{A} \cdot \mathbf{B} = (-2)(-5) + (4)(-3) = 10 - 12 = -2
   \]

2. **Calculate the magnitudes**:
   \[
   |\mathbf{A}| = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.47
   \]
   \[
   |\mathbf{B}| = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83
   \]

3. **Use the dot product to find \(\cos(\theta)\)**:
   \[
   \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} = \frac{-2}{4.47 \times 5.83} \approx -0.077
   \]

4. **Find \(\theta\)**:
   \[
Transcribed Image Text:**Problem Statement:** If Force = \((-2, 4)\) and Displacement = \((-5, -3)\), find the angle in degrees between the two vectors. **Options:** - 16 degrees - 160 degrees - 51 degrees - 94.4 degrees - 24.8 degrees **Solution Explanation:** To find the angle \(\theta\) between two vectors \(\mathbf{A}\) and \(\mathbf{B}\), use the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos(\theta) \] Where: - \(\mathbf{A} \cdot \mathbf{B}\) is the dot product of \(\mathbf{A}\) and \(\mathbf{B}\), - \(|\mathbf{A}|\) and \(|\mathbf{B}|\) are the magnitudes of \(\mathbf{A}\) and \(\mathbf{B}\), - \(\theta\) is the angle between \(\mathbf{A}\) and \(\mathbf{B}\). **Steps:** 1. **Calculate the dot product**: \[ \mathbf{A} \cdot \mathbf{B} = (-2)(-5) + (4)(-3) = 10 - 12 = -2 \] 2. **Calculate the magnitudes**: \[ |\mathbf{A}| = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} \approx 4.47 \] \[ |\mathbf{B}| = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \approx 5.83 \] 3. **Use the dot product to find \(\cos(\theta)\)**: \[ \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} = \frac{-2}{4.47 \times 5.83} \approx -0.077 \] 4. **Find \(\theta\)**: \[
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON