If f(0) = 8 and L(f(t)) = F(s), then L[(t - 1)e"-)u(t - 1)f" (t- 1)] = 8e- e"(s - 1)2F' (s - 1) - 2e*(s - 1)F(s - 1) 8e - e"(s + 1)2F'(s + 1) - 2e"(s + 1)F(s + 1) 8-e (s-1) F'(s - 1) - 2(s - 1)F(s - 1) Sel-1) - els-1) (s - 1)2F'(s - 1) - 2el-" (s – 1)F(s - 1) 8e - e"(s - 2) F'(s + 1) - 2e*(s - 2)F(s- 2)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
If f(0) = 8 and L(f(t)) = F(s), then
L[(t – 1)e"-)u(t – 1)f" (t- 1)] =
%3D
8e -
O e*(s - 1)?F' (s – 1)
- 2e*(s - 1)F(s – 1)
8e -
e (s + 1)?F' (s + 1)
- 2e*(s + 1)F(s + 1)
8 - e*(s – 1)?F' (s - 1)
- 2(s – 1)F(s – 1)
8els-1) -
els-1) (s – 1)2F" (s - 1)
- 2els-1) (s – 1)F(s - 1)
8e -
e(s - 2)2F'(s + 1)
- 2e*(s - 2)F(s - 2)
Transcribed Image Text:If f(0) = 8 and L(f(t)) = F(s), then L[(t – 1)e"-)u(t – 1)f" (t- 1)] = %3D 8e - O e*(s - 1)?F' (s – 1) - 2e*(s - 1)F(s – 1) 8e - e (s + 1)?F' (s + 1) - 2e*(s + 1)F(s + 1) 8 - e*(s – 1)?F' (s - 1) - 2(s – 1)F(s – 1) 8els-1) - els-1) (s – 1)2F" (s - 1) - 2els-1) (s – 1)F(s - 1) 8e - e(s - 2)2F'(s + 1) - 2e*(s - 2)F(s - 2)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,