If f(x) = (2² + 5x + 3)“, then s'(#) - [ f'(x) -

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

If \( f(x) = \left( x^2 + 5x + 3 \right)^4 \), then find the derivative \( f'(x) \).

**Solution:**

To find the derivative \( f'(x) \), use the chain rule. 

Let \( u(x) = x^2 + 5x + 3 \). 

Then, \( f(x) = u^4 \).

First, find the derivative of \( u(x) \): 

\[
u'(x) = \frac{d}{dx}(x^2 + 5x + 3) = 2x + 5
\]

Now apply the chain rule for \( f(x) = u^4 \):

\[
f'(x) = \frac{d}{du}(u^4) \cdot u'(x) = 4u^3 \cdot (2x + 5)
\]

Substitute back \( u = x^2 + 5x + 3 \):

\[
f'(x) = 4(x^2 + 5x + 3)^3 \cdot (2x + 5)
\]

Thus, the derivative is:

\[
f'(x) = 4(x^2 + 5x + 3)^3 (2x + 5)
\]
Transcribed Image Text:**Problem:** If \( f(x) = \left( x^2 + 5x + 3 \right)^4 \), then find the derivative \( f'(x) \). **Solution:** To find the derivative \( f'(x) \), use the chain rule. Let \( u(x) = x^2 + 5x + 3 \). Then, \( f(x) = u^4 \). First, find the derivative of \( u(x) \): \[ u'(x) = \frac{d}{dx}(x^2 + 5x + 3) = 2x + 5 \] Now apply the chain rule for \( f(x) = u^4 \): \[ f'(x) = \frac{d}{du}(u^4) \cdot u'(x) = 4u^3 \cdot (2x + 5) \] Substitute back \( u = x^2 + 5x + 3 \): \[ f'(x) = 4(x^2 + 5x + 3)^3 \cdot (2x + 5) \] Thus, the derivative is: \[ f'(x) = 4(x^2 + 5x + 3)^3 (2x + 5) \]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning