If a rainstorm drops 4 cm of rain over an area of 12 km- in the period of 2 hours, what is the momentum (in kg - m/s) of the rain that falls in nine seconds? Assume the terminal velocity of a raindrop is 10 m/s. (Enter the magnitude. The density of water is 1,000 kg/m. 0.35 x kg m/s

icon
Related questions
Question
**Problem Statement:**

If a rainstorm drops 4 cm of rain over an area of 12 km² in a period of 2 hours, what is the momentum (in kg·m/s) of the rain that falls in nine seconds? Assume the terminal velocity of a raindrop is 10 m/s. Enter the magnitude. The density of water is 1,000 kg/m³.

**Input Field:**

The answer input field contains the value: 0.35 kg·m/s.

**Explanation:**

To calculate the momentum of the rain, use the formula for momentum: 

\[ \text{Momentum} = \text{mass} \times \text{velocity} \]

1. **Volume Calculation:**
   - Convert the rain depth from centimeters to meters: 4 cm = 0.04 m.
   - Calculate the volume of rain using area and depth: \( \text{Volume} = \text{Area} \times \text{Depth} = 12 \times 10^6 \, \text{m}^2 \times 0.04 \, \text{m} = 480,000 \, \text{m}^3 \).

2. **Mass Calculation:**
   - Find the mass using the volume and density of water: 
     \[ \text{Mass} = \text{Volume} \times \text{Density} = 480,000 \, \text{m}^3 \times 1,000 \, \text{kg/m}^3 = 480,000,000 \, \text{kg} \]

3. **Rate of Rainfall:**
   - Determine the total duration in seconds for the volume of rain: 2 hours = 7200 seconds.
   - Calculate the volume that falls in nine seconds: 
     \[ \text{Volume in 9 seconds} = \frac{480,000 \, \text{m}^3}{7200 \, \text{s}} \times 9 \, \text{s} \approx 600 \, \text{m}^3 \]

4. **Mass in 9 seconds:**
   - Find the mass of rain in nine seconds:
     \[ \text{Mass in 9 seconds} = 600 \, \text{m}^3 \times 1,000 \, \text
Transcribed Image Text:**Problem Statement:** If a rainstorm drops 4 cm of rain over an area of 12 km² in a period of 2 hours, what is the momentum (in kg·m/s) of the rain that falls in nine seconds? Assume the terminal velocity of a raindrop is 10 m/s. Enter the magnitude. The density of water is 1,000 kg/m³. **Input Field:** The answer input field contains the value: 0.35 kg·m/s. **Explanation:** To calculate the momentum of the rain, use the formula for momentum: \[ \text{Momentum} = \text{mass} \times \text{velocity} \] 1. **Volume Calculation:** - Convert the rain depth from centimeters to meters: 4 cm = 0.04 m. - Calculate the volume of rain using area and depth: \( \text{Volume} = \text{Area} \times \text{Depth} = 12 \times 10^6 \, \text{m}^2 \times 0.04 \, \text{m} = 480,000 \, \text{m}^3 \). 2. **Mass Calculation:** - Find the mass using the volume and density of water: \[ \text{Mass} = \text{Volume} \times \text{Density} = 480,000 \, \text{m}^3 \times 1,000 \, \text{kg/m}^3 = 480,000,000 \, \text{kg} \] 3. **Rate of Rainfall:** - Determine the total duration in seconds for the volume of rain: 2 hours = 7200 seconds. - Calculate the volume that falls in nine seconds: \[ \text{Volume in 9 seconds} = \frac{480,000 \, \text{m}^3}{7200 \, \text{s}} \times 9 \, \text{s} \approx 600 \, \text{m}^3 \] 4. **Mass in 9 seconds:** - Find the mass of rain in nine seconds: \[ \text{Mass in 9 seconds} = 600 \, \text{m}^3 \times 1,000 \, \text
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions