If a circular accretion disk around a 1.4 M neutron Star has a radius of 5.00 x 10^5 km as measured from the center of the neutron Star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is 1.99 x 10^30 kg. Hint: Use the circular orbit velocity formula, Vc = GM/R ; make sure to express quantities in units, meters, kilograms, & seconds.) ________ km/s
Q: A red giant star might have radius = 104 times the solar radius, and luminosity = 1730 times solar…
A: This problem can be solved using Stefan-Boltzmann law of Black body radiation.
Q: Consider a disk with disk temperature T = T0(r/AU)−1 with T0 = 200K.and surface density given by Σ =…
A: The objective of this question is to find the difference between the orbital speed of the gas at 1…
Q: Suppose you observe a star orbiting the Galatic center at a speed of 1000 km/s in a circular orbit…
A:
Q: If an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every…
A: The expression for the Kepler’s third law is as follows: MA+MB=a3p2 1
Q: person weigh on the surface of this star?
A: Mass of sun, m Mass of star, M=1.8×m Radius of Sun, r Radius of star, R=0.06×r Given, weight of a…
Q: A molecular cloud is 22 pc in diameter and is located 303 pc from Earth. What is its angular size on…
A:
Q: If the main-sequence mass lower limit is 0.08 solar mass and the brightest main-sequence stars are 1…
A: The Main Sequence Stars are a mass sequence, with low mass stars forming an equilibrium with a cool…
Q: If the accretion disk around a neutron star has a radius of 2 × 105 km, what is the orbital velocity…
A: Neutron stars are formed when massive stars collapse under their own gravity. They are very…
Q: the book's example of the Schwarzchild radius of the supermassive black hole Sag A* with a mass of…
A:
Q: Calculate the total energy output per second in watts (W) of a star that converts 900 million tonnes…
A: To calculate the energy output per second in watts (W) of a star that converts 900 million tonnes of…
Q: Astronomy) (Part A) White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and…
A: Mass of the dwarf planet = 0.98 solar mass = 1.96 * 1033 gm…
Q: What is the escape velocity at the surface of a typical neutron star?
A: In celestial mechanics, the escape velocity is defined as the minimum velocity required by a…
Q: Assuming that at the end of the He burning phase of the stellar core (r R_core). Calculate the…
A:
Q: If the accretion disk around a neutron star has a radius of 8 ✕ 105 km, what is the orbital velocity…
A: Given Data: The radius of the neutron star is r = 8 x 105 km. As we know that the mass of the…
Q: a supernova remnant is now 2.95 pc in radius and is expanding at 3,850 km/s. approximately how many…
A: Given information: The radius of the supernova remnant (D) = 2.95 pc = 2.95 (3.1×1013 km) = 9.145…
Q: An AGN hosts a central Black Hole of mass 2×1038×1038 kg. The AGN emits at 1/51/5 of the Eddington…
A: To find the luminosity of the AGN, we can use the Eddington luminosity formula:L = η * (4 * π * G *…
Q: 2. (a) Find the virial mass of a cluster for which the rms radial velocity dispersion is 5 km/s and…
A: Because of how clusters are prepared, they remain as tiny particles in the course of an experiment…
Q: If the accretion disk around a neutron star has a radius of 8 ✕ 105 km, what is the orbital velocity…
A:
Q: Convert the average mass density in gm/cm-3 of a M = 0.5 Msun R = 0.015 Rsun white dwarf to the…
A: Given that For white dwarf star given that M = 0.5 Msun R = 0.015 Rsun We know that mass of sun…
Q: What is the free-fall time of a 10 MSun main-sequence star? O 100 hours 10 hours O 1 hour O 0.1…
A: The problem is based upon free fall of a star. Here the given star is having the mass 10 times the…
Q: If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength…
A: Concept: "The Wien's displacement law states that the wavelength carrying maximum energy is…
Q: Observations show that the gas ejected from SN 1987A is moving at about 10,000 km/s. How long will…
A:
Q: Consider an M-dwarf star of mass 0.1M⊙ and luminosity 10−3L⊙. When the star joins the main sequence…
A: Luminosity of the star is defined as the power emitted by the star. Power is simply the energy…
Q: Vega has Mv = 0.5. How large is Mbol? Calculate the luminosity of Vega. Remember that Mbolo = 4.75.…
A: Given information": The absolute visible magnitude of Vega (Mv) = 0.5 The Spectral class of Vega is…
Q: A 1.8 M neutron and a 0.7 M white dwarf have been found orbiting each other with a period of 28…
A: Kepler’s third law for binary stars
Q: What is the orbital period of a bit of matter in an accretion disk that is located 8 x 10^5 km from…
A: The radius of the black hole is, The mass of the black hole is,
Q: In a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence…
A: In the field of stellar evolution, there is a principle that the lifetime of a star on the main…
Q: The flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m?. The luminosity of the…
A: flux (I) = 3.0182×10-10 Wm2luminosity = 6×109 solar luminosities
Q: This star has a mass of 3.3 MSun. What is the main sequence lifetime of this star? You may assume…
A: The main sequence lifetime is given as:t α1M2.5it is given star has mass of 3.3 MSunSo,…
Q: If a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun…
A: A 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron…
Q: Vega Star of radius (1.6832) million km emit a) thermal radiation as a black body radiation at…
A:
Q: Using the center-of-mass equations or the Center of Mass Calculator (under Binary-Star Basics,…
A: Given: In this question, the given details are Consider the star 1 has m1=3.4 solar masses, and the…
Q: If a circular accretion disk around a 1.4 M. neutron star has a radius of 8.00 x 10° km as measured…
A: Given data: Mass of the Neutron star is, M= 1.4 Ms Where, Ms - Mass of the sun Therefore, Mass of…
Q: The Orion Nebula is about 20 light-years (20 × 1018 cm) across, enclosing a roughly spherical area…
A:
Q: If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every…
A: from the equation relating the period of orbit P and the semi-major axis of orbit a, we have…
Q: If a neutron star has a radius of 12 km and rotates 1,352 times a second, what is the speed at which…
A: radius of neutron star (r) = 12 km = 12000 m angular speed (ω) = 1352 revolutions per second
Q: A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES…
A: Given information: The mass of the star (m) = 25M⊙ The luminosity of the star (L) = 80000L⊙ part a):…
Q: The radius of the nebula is about 0.401 light-years. The gas is expanding away from the star at a…
A: Given that, r=0.401 light year1 light year=9.46×1015 mr=0.401×9.46×1015=3.79×1015 mThe particle at…
If a circular accretion disk around a 1.4 M neutron Star has a radius of 5.00 x 10^5 km as measured from the center of the neutron Star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is 1.99 x 10^30 kg. Hint: Use the circular orbit velocity formula, Vc = GM/R ; make sure to express quantities in units, meters, kilograms, & seconds.)
________ km/s
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
- Betelgeuse is a nearby supergiant that will eventually explode into a supernova. Let's see how awesome it would look. At peak brightness, the supernova will have a luminosity of about 10 billion times the Sun. It is 600 light-years away. All stellar brightnesses are compared with Vega, which has an intrinsic luminosity of about 60 times the Sun, a distance of 25 light-years, an absolute magnitude of 0.6 and an apparent magnitude of 0 (by definition). a) At peak brightness, how many times brighter will Betelgeuse be than Vega? b) Approximately what apparent magnitude does this correspond to? c) The Sun is about -26.5 apparent magnitude. What fraction of the Sun's brightness will Betelgeuse be?If an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.) ___________ AUWhy are Cepheid variables important? O Cepheids variables are pulsating stars whose pulsation periods are directly related to their true luminosities. Therefore they can be used as distance indicators. O Cepheids variables are supermassive stars that are on the verge of becoming supernovae. Therefore they allow us to choose candidates to watch if we hope to observe a supernova. O Cepheid variables are stars that vary in brightness because they harbor a black hole. Therefore, they provide direct evidence for black holes. O Cepheids variables are a type of irregular galaxy, much more common in the early universe. Therefore they help to understand how galaxies formed.
- If the sun, which has a rotational period of 25 days, collapses from its current radius (700,000 km) to the radius of a neutron star (10 km) without losing any of its mass, what will its rotational speed be in seconds afer collapse?A supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.]What is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/s
- What is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?Consider two stars on the main sequence, A and B. Star A has a mass of 6 M⊙. Star B has a mass of 0.3 M⊙. Compute the ratio of main sequence lifetimes for the two stars, TB/TA .If a circular accretion disk around a 1.4 M, neutron star has a radius of 1.00 x 105 km as measured from the center of the neutron star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is GM 1.99 x 1030 kg. Hint: Use the circular orbit velocity formula, V, = ; make sure to express quantities in units of meters, kilograms, and seconds.) km/s