I. Consider the following linear system: 3x1 + 9x2 + 3x3 = 6 2x1 -2x1 – 4x2 - x3 = 12 = -8 We can view this system as a matrix equation: 3 9 3 6 2 0 -1 -2 -4 12 Which has the form: Ax X = B To solve the original system, we can solve this equation for X by multiplying by A-1: A-1 × (A × X) = A-1 × B (A-1 × A) × X = A¯1 × B Iz x X = A-1 × B x = A-1 x B Use the bottom equation to solve for X. Find A-1 for the matrix A and solve the original system by using A-1 and B in the (1) equation below. X = A-1 x B

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Matrix Equation and System of Linear Equations**

I. **Consider the following linear system:**

\[
\begin{align*}
3x_1 + 9x_2 + 3x_3 &= 6 \\
2x_1 - x_3 &= 12 \\
-2x_1 - 4x_2 &= -8 \\
\end{align*}
\]

We can view this system as a matrix equation:

\[
\begin{bmatrix}
3 & 9 & 3 \\
2 & 0 & -1 \\
-2 & -4 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}
=
\begin{bmatrix}
6 \\
12 \\
-8 \\
\end{bmatrix}
\]

Which has the form: \( A \times X = B \)

To solve the original system, we can solve this equation for \( X \) by multiplying by \( A^{-1} \):

\[
\begin{align*}
A^{-1} \times (A \times X) &= A^{-1} \times B \\
(A^{-1} \times A) \times X &= A^{-1} \times B \\
I_3 \times X &= A^{-1} \times B \\
X &= A^{-1} \times B \\
\end{align*}
\]

Use the bottom equation to solve for \( X \).

[1] **Find \( A^{-1} \) for the matrix \( A \) and solve the original system by using \( A^{-1} \) and \( B \) in the equation below.**

\[ X = A^{-1} \times B \]

[2] **Use the matrix \( A^{-1} \) you just found to solve the system:**

\[
\begin{align*}
3x_1 + 9x_2 + 3x_3 &= 12 \\
2x_1 - x_3 &= 9 \\
-2x_1 - 4x_2 &= -3 \\
\end{align*}
\]

Show your work here.
Transcribed Image Text:**Matrix Equation and System of Linear Equations** I. **Consider the following linear system:** \[ \begin{align*} 3x_1 + 9x_2 + 3x_3 &= 6 \\ 2x_1 - x_3 &= 12 \\ -2x_1 - 4x_2 &= -8 \\ \end{align*} \] We can view this system as a matrix equation: \[ \begin{bmatrix} 3 & 9 & 3 \\ 2 & 0 & -1 \\ -2 & -4 & 0 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \\ -8 \\ \end{bmatrix} \] Which has the form: \( A \times X = B \) To solve the original system, we can solve this equation for \( X \) by multiplying by \( A^{-1} \): \[ \begin{align*} A^{-1} \times (A \times X) &= A^{-1} \times B \\ (A^{-1} \times A) \times X &= A^{-1} \times B \\ I_3 \times X &= A^{-1} \times B \\ X &= A^{-1} \times B \\ \end{align*} \] Use the bottom equation to solve for \( X \). [1] **Find \( A^{-1} \) for the matrix \( A \) and solve the original system by using \( A^{-1} \) and \( B \) in the equation below.** \[ X = A^{-1} \times B \] [2] **Use the matrix \( A^{-1} \) you just found to solve the system:** \[ \begin{align*} 3x_1 + 9x_2 + 3x_3 &= 12 \\ 2x_1 - x_3 &= 9 \\ -2x_1 - 4x_2 &= -3 \\ \end{align*} \] Show your work here.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,