I. Censder he function S. ând glx) F) =a(a02) = -XIn(3x) how, Except Speei Fred, use the Sea Secant metuod for a pproximatió n. (a The third CP.) and feterfti fif th (Ps) approximation, for the [93:0,H] rounded valuse Zero of gxS on the interya1. to Seven deeimats are and %3D P5 = f(8) (rounded oft to (b) Compute and gC) (Scientific notation, rounded off to Sx decima1s) Sit decmaus)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please need solution
1. Censider 4he functiou S.
FOx) =aca02) and glx)= -Xin(3x)
now, Except Speei Fred, use the Seed Secant
method for a pproximation.
%3D
(a) The third Cp) and fetrth fifth (Ps) approxmatiòn
for the
[9,3;04], rounded
value
Zero of gx) on the interval
to Seven deeimats are
and
P5 =
b Compute f(8) (rounded oft to
and g() (sCientific notation, rounded off to
Su deamâts)
Sit decimaus)
(e) Determine, Pn; F(Pn) and 8 (P.) where
Pn is the 1ntereept betwren fed and go
interval [o.1;0.2] within
on the
of 10-5. whât is the required number
interations
a tolerance
n of
コ;ギ(R) =
Gve Give Pay F(pn) and g CPn) rounded
Six decimais
%3D
%3D
n=
Transcribed Image Text:1. Censider 4he functiou S. FOx) =aca02) and glx)= -Xin(3x) now, Except Speei Fred, use the Seed Secant method for a pproximation. %3D (a) The third Cp) and fetrth fifth (Ps) approxmatiòn for the [9,3;04], rounded value Zero of gx) on the interval to Seven deeimats are and P5 = b Compute f(8) (rounded oft to and g() (sCientific notation, rounded off to Su deamâts) Sit decimaus) (e) Determine, Pn; F(Pn) and 8 (P.) where Pn is the 1ntereept betwren fed and go interval [o.1;0.2] within on the of 10-5. whât is the required number interations a tolerance n of コ;ギ(R) = Gve Give Pay F(pn) and g CPn) rounded Six decimais %3D %3D n=
Expert Solution
Step 1


Letf(x)=-xlog(3x) 

1st iteration :

x0=0.3 and x1=0.4  f(x0)=f(0.3)=0.0137272 and f(x1)=f(0.4)=-0.0316725  x2=x0-f(x0)x1-x0f(x1)-f(x0)  x2=0.3-0.01372720.4-0.3-0.0316725-0.0137272  x2=0.3302364  f(x2)=f(0.3302364)=-0.3302364log(0.9907092)=0.0013387


2nd iteration :

x1=0.4 and x2=0.3302364  f(x1)=f(0.4)=-0.0316725 and f(x2)=f(0.3302364)=0.0013387  x3=x1-f(x1)x2-x1f(x2)-f(x1)  x3=0.4-(-0.0316725)0.3302364-0.4  0.0013387-(-0.0316725)x3=0.3330655  f(x3)=f(0.3330655)=-0.3330655log(0.9991965)=0.0001163


3rd iteration :

x2=0.3302364 and x3=0.3330655  f(x2)=f(0.3302364)=0.0013387 and f(x3)=f(0.3330655)=0.0001163  x4=x2-f(x2)x3-x2 f(x3)-f(x2) x4=0.3302364-0.00133870.3330655-0.33023640.0001163-0.0013387  x4=0.3333346  f(x4)=f(0.3333346)=-0.3333346log(1.0000038)=-0.0000005


4th iteration :

x3=0.3330655 and x4=0.3333346  f(x3)=f(0.3330655)=0.0001163 and f(x4)=f(0.3333346)=-0.0000005   x5=x3-f(x3)x4-x3f(x4)-f(x3)  x5=0.3330655-0.00011630.3333346-0.3330655 -0.0000005-0.0001163 x5=0.3333333  f(x5)=f(0.3333333)=-0.3333333log(0.9999999)=0


The approximate root of the equation -xlog(3x)=0 using the Secant method is 0.3333333

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,