I. Active site analysis. Below is a diagram of a putative active site for Monoamine oxidase. As we learned, the purpose of tertiary structure is to form a scaffold so you can orient just a few amino acids in the right orientation to promote binding and/or catalysis. The position where this occurs is the active site. The amino acid architecture of an active site is designed to bind substrates. Amino acid side chains are capable of hydrogen bonding, ionic and hydrophobic interactions. Fill in each amino acid that you think is suitable for interacting with the part of the substrate it is closest to. Assume the pH will be at 7.0 a.a.#1 a.a.#2 a.a.#6 DU NH₂ НО. НО a.a.#5 OH a.a.#3 a.a.#4

Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
I. Active site analysis.
Below is a diagram of a putative active site for Monoamine oxidase. As we learned, the purpose of
tertiary structure is to form a scaffold so you can orient just a few amino acids in the right orientation
to promote binding and/or catalysis. The position where this occurs is the active site. The amino acid
architecture of an active site is designed to bind substrates. Amino acid side chains are capable of
hydrogen bonding, ionic and hydrophobic interactions. Fill in each amino acid that you think is
suitable for interacting with the part of the substrate it is closest to. Assume the pH will be at 7.0
a.a.#1
a.a.#2
a.a.#6
HO
Lond
NH₂
НО
a.a.#5
OH
a.a.#3
a.a.#4
Transcribed Image Text:I. Active site analysis. Below is a diagram of a putative active site for Monoamine oxidase. As we learned, the purpose of tertiary structure is to form a scaffold so you can orient just a few amino acids in the right orientation to promote binding and/or catalysis. The position where this occurs is the active site. The amino acid architecture of an active site is designed to bind substrates. Amino acid side chains are capable of hydrogen bonding, ionic and hydrophobic interactions. Fill in each amino acid that you think is suitable for interacting with the part of the substrate it is closest to. Assume the pH will be at 7.0 a.a.#1 a.a.#2 a.a.#6 HO Lond NH₂ НО a.a.#5 OH a.a.#3 a.a.#4
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman
Lehninger Principles of Biochemistry
Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul…
Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning
Biochemistry
Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning
Fundamentals of General, Organic, and Biological …
Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON