(i) We consider a one-dimensional potential barrier problem. In order for the particle to tunnel through the potential barrier of the width L, the difference between the barrier height U and the incident energy E of the particle with mass m has to be close. Using the transmission probability given in the text book / lecture, obtain the energy difference U-E which gives the transmission probability of exp(-2). (ii) We consider an infinite square well potential with the width L. Obtain the energy E_{gr} of the lowest energy level (ground state) of the particle with mass m, and show that E_{gr} scales linearly with E-U in the problem (i). The potential structures of (i) and (ii) can be viewed as "shadows" of each other.
(i) We consider a one-dimensional potential barrier problem. In order for the particle to tunnel through the potential barrier of the width L, the difference between the barrier height U and the incident energy E of the particle with mass m has to be close. Using the transmission probability given in the text book / lecture, obtain the energy difference U-E which gives the transmission probability of exp(-2). (ii) We consider an infinite square well potential with the width L. Obtain the energy E_{gr} of the lowest energy level (ground state) of the particle with mass m, and show that E_{gr} scales linearly with E-U in the problem (i). The potential structures of (i) and (ii) can be viewed as "shadows" of each other.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images