(1) A single particla quantum mechanical oscillator has energy levels (n + 1/2) hw, where n = 0, 1, 2, ... and is the natural frequency of the oscillator. This oscillator is in thermal equi- librium with a reservoir at temperature T. (a) Find the ratio of probability of the oscillator being in the first excited state (n = 1) to the probability of being in the ground state. (b) Assuming that only the two states in Part la are occupied, find the average energy as a function of T. (c) Calculate the heat capacity at a constant volume. Does it depend on temperature?
(1) A single particla quantum mechanical oscillator has energy levels (n + 1/2) hw, where n = 0, 1, 2, ... and is the natural frequency of the oscillator. This oscillator is in thermal equi- librium with a reservoir at temperature T. (a) Find the ratio of probability of the oscillator being in the first excited state (n = 1) to the probability of being in the ground state. (b) Assuming that only the two states in Part la are occupied, find the average energy as a function of T. (c) Calculate the heat capacity at a constant volume. Does it depend on temperature?
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images