I need a line by line explination as to how the below Python program works. I am having a hard time understanding how the code under the comment "put this code into the main method" works with the rest of the program. Python program source code: import math class Complex(object):     def __init__(self, real, imaginary):         self.real = real         self.imaginary = imaginary     def __add__(self, no):                # (a + ib) + (c + id) = (a + c) + i(b + d)         real = self.real + no.real         imaginary = self.imaginary + no.imaginary         return Complex(real, imaginary)     def __sub__(self, no):                # (a + ib) - (c + id) = (a - c) + i(b - d)         real = self.real - no.real         imaginary = self.imaginary - no.imaginary         return Complex(real, imaginary)     def __mul__(self, no):                # (a + ib) * (c + id) = (ac - bd) + i(ad + bc)         real = self.real * no.real - self.imaginary * no.imaginary         imaginary = self.real * no.imaginary + self.imaginary * no.real         return Complex(real, imaginary)     def __truediv__(self, no):                # (a+ib)/(c+id) = ((ac + bd) + i(bc - ad)) / (c^2 + d^2)         real = (self.real * no.real + self.imaginary * no.imaginary) / (no.real**2 + no.imaginary**2)         imaginary = (self.imaginary * no.real - self.real * no.imaginary) / (no.real**2 + no.imaginary**2)         return Complex(real, imaginary)     def mod(self):                # a + ib = sqrt(a^2 + b^2), sqrt(c^2 + d^2)         real = math.sqrt((self.real ** 2 + self.imaginary ** 2))         return Complex(real, 0)     def __str__(self):                #Real and imaginary numbers should be correct up to two decimal places.         if self.imaginary >= 0:             result = '{0:.2f} + {1:.2f}i'.format(self.real, self.imaginary)         else:             result = '{0:.2f} - {1:.2f}i'.format(self.real, abs(self.imaginary))         return result    # Put this code into the main method C = map(float, input("Input a complex number e.g.(2 spacebar 1): ").split()) D = map(float, input("Input a complex number e.g.(5 spacebar 6): ").split()) x = Complex(*C) y = Complex(*D) print('\n'.join(map(str, [x+y, x-y, x*y, x/y, x.mod(), y.mod()])))   Thank you

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

I need a line by line explination as to how the below Python program works. I am having a hard time understanding how the code under the comment "put this code into the main method" works with the rest of the program.

Python program source code:

import math

class Complex(object):

    def __init__(self, real, imaginary):

        self.real = real

        self.imaginary = imaginary

    def __add__(self, no):
        
        # (a + ib) + (c + id) = (a + c) + i(b + d)

        real = self.real + no.real

        imaginary = self.imaginary + no.imaginary

        return Complex(real, imaginary)

    def __sub__(self, no):
        
        # (a + ib) - (c + id) = (a - c) + i(b - d)

        real = self.real - no.real

        imaginary = self.imaginary - no.imaginary

        return Complex(real, imaginary)

    def __mul__(self, no):
        
        # (a + ib) * (c + id) = (ac - bd) + i(ad + bc)

        real = self.real * no.real - self.imaginary * no.imaginary

        imaginary = self.real * no.imaginary + self.imaginary * no.real

        return Complex(real, imaginary)

    def __truediv__(self, no):
        
        # (a+ib)/(c+id) = ((ac + bd) + i(bc - ad)) / (c^2 + d^2)

        real = (self.real * no.real + self.imaginary * no.imaginary) / (no.real**2 + no.imaginary**2)

        imaginary = (self.imaginary * no.real - self.real * no.imaginary) / (no.real**2 + no.imaginary**2)

        return Complex(real, imaginary)

    def mod(self):
        
        # a + ib = sqrt(a^2 + b^2), sqrt(c^2 + d^2)

        real = math.sqrt((self.real ** 2 + self.imaginary ** 2))

        return Complex(real, 0)

    def __str__(self):
        
        #Real and imaginary numbers should be correct up to two decimal places.

        if self.imaginary >= 0:

            result = '{0:.2f} + {1:.2f}i'.format(self.real, self.imaginary)

        else:

            result = '{0:.2f} - {1:.2f}i'.format(self.real, abs(self.imaginary))

        return result
    
# Put this code into the main method

C = map(float, input("Input a complex number e.g.(2 spacebar 1): ").split())

D = map(float, input("Input a complex number e.g.(5 spacebar 6): ").split())

x = Complex(*C)

y = Complex(*D)

print('\n'.join(map(str, [x+y, x-y, x*y, x/y, x.mod(), y.mod()])))

 

Thank you

AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Knowledge Booster
ADT and Class
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education