i just need final answer The band-pass filter in the figure is required to pass signals with a frequency of f = 19 kHz with a tolerance of 10% (For example, for a 100 kHz operation, the low cut-off frequency will be fOL = 90 kHz and the high cut-off frequency fOH = 110 kHz). Accordingly, when RG1 = 470 Ω, RG2 = 560 Ω, RF1 = 1.2 kΩ, RF2 = 2 kΩ, C1 = 0.05 μF and C2 = 0.03 μF, what should the values of the resistors R1 and R2 be, respectively? (Op-amps would be considered ideal.) a. R1 = 186,15 Ω ve R2 = 253,83 Ω b. R1 = 316,45 Ω ve R2 = 152,30 Ω c. R1 = 260,61 Ω ve R2 = 253,83 Ω d. R1 = 186,15 Ω ve R2 = 152,30 Ω e. R1 = 316,45 Ω ve R2 = 253,83 Ω f. R1 = 186,15 Ω ve R2 = 76,15 Ω g. R1 = 186,15 Ω ve R2 = 355,36 Ω h. R1 = 55,84 Ω ve R2 = 253,83 Ω i. R1 = 316,45 Ω ve R2 = 355,36 Ω j. R1 = 186,15 Ω ve R2 = 431,51 Ω k. R1 = 111,69 Ω ve R2 = 253,83 Ω
i just need final answer
The band-pass filter in the figure is required to pass signals with a frequency of f = 19 kHz with a tolerance of 10% (For example, for a 100 kHz operation, the low cut-off frequency will be fOL = 90 kHz and the high cut-off frequency fOH = 110 kHz). Accordingly, when RG1 = 470 Ω, RG2 = 560 Ω, RF1 = 1.2 kΩ, RF2 = 2 kΩ, C1 = 0.05 μF and C2 = 0.03 μF, what should the values of the resistors R1 and R2 be, respectively? (Op-amps would be considered ideal.)
a.
R1 = 186,15 Ω ve R2 = 253,83 Ω
b.
R1 = 316,45 Ω ve R2 = 152,30 Ω
c.
R1 = 260,61 Ω ve R2 = 253,83 Ω
d.
R1 = 186,15 Ω ve R2 = 152,30 Ω
e.
R1 = 316,45 Ω ve R2 = 253,83 Ω
f.
R1 = 186,15 Ω ve R2 = 76,15 Ω
g.
R1 = 186,15 Ω ve R2 = 355,36 Ω
h.
R1 = 55,84 Ω ve R2 = 253,83 Ω
i.
R1 = 316,45 Ω ve R2 = 355,36 Ω
j.
R1 = 186,15 Ω ve R2 = 431,51 Ω
k.
R1 = 111,69 Ω ve R2 = 253,83 Ω
Step by step
Solved in 2 steps