i = i x L (4) i is the torque acting on the spinning wheel. I is the precessional angular velocity. I is the angular momentum of the spinning wheel. The period of rotation of the wheel is, 2n Tp Wp (5) Lab Procedure Step 1) Watch the following videos to gain a better understanding of the conservation of angular momentum and precession: https://www.youtube.com/watch?v=ty9QSiVC2g0 https://www.youtube.com/watch?v=n5bKzBZ7XuM Step 2) The purpose of Lab 11 is to design an experiment based on gyroscopic precession and determine the precessional angular velocity and period of rotation of an object. Each student needs to choose an object, for example a wheel, disk, sphere, etc. The dimensions and mass of this object is also to be chosen by the student. Step 3) The object now moves with gyroscopic precession. Step 4) Indicate on a sketch the direction of angular velocity, precessional angular velocity, angular momentum and torque. Step 5) Explain how the object is able to maintain its motion without falling over. Step 6) Calculate the precessional angular velocity and period of rotation of the object.
i = i x L (4) i is the torque acting on the spinning wheel. I is the precessional angular velocity. I is the angular momentum of the spinning wheel. The period of rotation of the wheel is, 2n Tp Wp (5) Lab Procedure Step 1) Watch the following videos to gain a better understanding of the conservation of angular momentum and precession: https://www.youtube.com/watch?v=ty9QSiVC2g0 https://www.youtube.com/watch?v=n5bKzBZ7XuM Step 2) The purpose of Lab 11 is to design an experiment based on gyroscopic precession and determine the precessional angular velocity and period of rotation of an object. Each student needs to choose an object, for example a wheel, disk, sphere, etc. The dimensions and mass of this object is also to be chosen by the student. Step 3) The object now moves with gyroscopic precession. Step 4) Indicate on a sketch the direction of angular velocity, precessional angular velocity, angular momentum and torque. Step 5) Explain how the object is able to maintain its motion without falling over. Step 6) Calculate the precessional angular velocity and period of rotation of the object.
Related questions
Question
show work and solve the questions using made up values!
answer questions 5 and 6 thank you
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images