The heat released when one mole of water is formed from the elements is 1,198 kJ. An experiment was conducted that permitted water to form in this manner, and the heat was contained in 2.0 liters of water. The water temperature before the reaction was 34.5°C, and after the reaction it had risen to 52.0°C. How many moles of water were formed? (The specific heat of water is 4.184 J/g·°C.)
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
The heat released when one mole of water is formed from the elements is 1,198 kJ. An experiment was conducted that permitted water to form in this manner, and the heat was contained in 2.0 liters of water. The water temperature before the reaction was 34.5°C, and after the reaction it had risen to 52.0°C. How many moles of water were formed? (The specific heat of water is 4.184 J/g·°C.)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
I actually got the same answer as yours. However, it says in the book that the correct answer is 0.12 mole. Can you explain why?