How well do exams given during the semester predict performance on the final (represented with variable s)? One class had three tests during the semester. Computer output of the regression gives the following: a) Write the equation of the regression model. b) What can you conclude about the significance of the regression model? Explain. c) Is following correct, explain: “Unit increase in final score means an increase of 0.2560 in Test1 score.” d) Calculate R2 value. e) How much of the variation in final exam scores is accounted for by the regression model? f) Explain in context what the coefficient of Test3 scores means. g) A student argues the first exam doesn’t help to predict final performance, and suggests that this exam not be given at all. Does Test1 have no effect on the final exam score? Can you tell from this model? (Hint: Do you think test scores are related to each other?) h) Examine following plots and discuss whether the assumptions for the regression seem reasonable. (in the attachment)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
100%

How well do exams given during the semester predict performance on the final (represented with variable s)? One class had three tests during the semester. Computer output of the regression gives the following:
a) Write the equation of the regression model.
b) What can you conclude about the significance of the regression model? Explain.
c) Is following correct, explain: “Unit increase in final score means an increase of 0.2560 in Test1 score.”
d) Calculate R2 value.
e) How much of the variation in final exam scores is accounted for by the regression model?
f) Explain in context what the coefficient of Test3 scores means.
g) A student argues the first exam doesn’t help to predict final performance, and suggests that this exam not be given at all. Does Test1 have no effect on the final exam score? Can you tell from this model? (Hint: Do you think test scores are related to each other?)
h) Examine following plots and discuss whether the assumptions for the regression seem reasonable. (in the attachment)

 

I also shared the ss of the question in the attachment.

Question-7:
How well do exams given during the semester predict performance on the final (represented with
variable s)? One class had three tests during the semester. Computer output of the regression gives the
following:
Predictor
Coeff
SE(Coeff)
P-value
Intercept
-6.72
14.00
-0.48
0.636
Test1
0.2560
0.2274
1.13
0.274
Test2
0.3912
0.2198
1.78
0.091
Test3
0.9015
0.2086
4.32
<0.0001
Analysis of Variance
Source
DF
MS
P-value
3 11961.8
3987.3
Regression
Error
22.02 <0.0001
19
3440.8
181.1
Total
22 15402.6
a) Write the equation of the regression model.
b) What can you conclude about the significance of the regression model? Explain.
c) Is following correct, explain: "Unit increase in final score means an increase of 0.2560 in Test1 score."
d) Calculate R' value.
e) How much of the variation in final exam scores is accounted for by the regression model?
f) Explain in context what the coefficient of Test3 scores means.
g) A student argues the first exam doesn't help to predict final performance, and suggests that this exam
not be given at all. Does Test1 have no effect on the final exam score? Can you tell from this
model? (Hint: Do you think test scores are related to each other?)
h) Examine following plots and discuss whether the assumptions for the regression seem reasonable.
Residuais vs, the Fited Values
(Pasporse is Final)
Nomal Protebily Piot of the Residuals
(Pesporse is Firel)
10-
-10
-20 +
50
60
70
B0 90 100 110 120 130 140
150
-10
10
20
Fitad Value
Residal points)
Histogram of he Residuals
(Aesponsa is Final)
-20 -15 -10 -5 0
5 10 15 20
Rasktuals (points)
Kouanbeu
(uod) prpna
Transcribed Image Text:Question-7: How well do exams given during the semester predict performance on the final (represented with variable s)? One class had three tests during the semester. Computer output of the regression gives the following: Predictor Coeff SE(Coeff) P-value Intercept -6.72 14.00 -0.48 0.636 Test1 0.2560 0.2274 1.13 0.274 Test2 0.3912 0.2198 1.78 0.091 Test3 0.9015 0.2086 4.32 <0.0001 Analysis of Variance Source DF MS P-value 3 11961.8 3987.3 Regression Error 22.02 <0.0001 19 3440.8 181.1 Total 22 15402.6 a) Write the equation of the regression model. b) What can you conclude about the significance of the regression model? Explain. c) Is following correct, explain: "Unit increase in final score means an increase of 0.2560 in Test1 score." d) Calculate R' value. e) How much of the variation in final exam scores is accounted for by the regression model? f) Explain in context what the coefficient of Test3 scores means. g) A student argues the first exam doesn't help to predict final performance, and suggests that this exam not be given at all. Does Test1 have no effect on the final exam score? Can you tell from this model? (Hint: Do you think test scores are related to each other?) h) Examine following plots and discuss whether the assumptions for the regression seem reasonable. Residuais vs, the Fited Values (Pasporse is Final) Nomal Protebily Piot of the Residuals (Pesporse is Firel) 10- -10 -20 + 50 60 70 B0 90 100 110 120 130 140 150 -10 10 20 Fitad Value Residal points) Histogram of he Residuals (Aesponsa is Final) -20 -15 -10 -5 0 5 10 15 20 Rasktuals (points) Kouanbeu (uod) prpna
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman