how to write the body of the functions?

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

how to write the body of the functions?

 
from typing import List
 
import csv
import math
 
################################################################################
# Begin constants
################################################################################
COLUMN_ID = 0
COLUMN_NAME = 1
COLUMN_HIGHWAY = 2
COLUMN_LAT = 3
COLUMN_LON = 4
COLUMN_YEAR_BUILT = 5
COLUMN_LAST_MAJOR_REHAB = 6
COLUMN_LAST_MINOR_REHAB = 7
COLUMN_NUM_SPANS = 8
COLUMN_SPAN_DETAILS = 9
COLUMN_DECK_LENGTH = 10
COLUMN_LAST_INSPECTED = 11
COLUMN_BCI = 12
 
INDEX_BCI_YEARS = 0
INDEX_BCI_SCORES = 1
MISSING_BCI = -1.0
 
EARTH_RADIUS = 6371
 
 
################################################################################
# Sample data for docstring examples
################################################################################
def create_example_bridge_1() -> list:
"""Return a bridge in our list-format to use for doctest examples.
 
This bridge is the same as the bridge from row 3 of the dataset.
"""
 
return [
1, 'Highway 24 Underpass at Highway 403',
'403', 43.167233, -80.275567, '1965', '2014', '2009', 4,
[12.0, 19.0, 21.0, 12.0], 65.0, '04/13/2012',
[['2013', '2012', '2011', '2010', '2009', '2008', '2007',
'2006', '2005', '2004', '2003', '2002', '2001', '2000'],
[MISSING_BCI, 72.3, MISSING_BCI, 69.5, MISSING_BCI, 70.0, MISSING_BCI,
70.3, MISSING_BCI, 70.5, MISSING_BCI, 70.7, 72.9, MISSING_BCI]]
]
 
 
def create_example_bridge_2() -> list:
"""Return a bridge in our list-format to use for doctest examples.
 
This bridge is the same as the bridge from row 4 of the dataset.
"""
 
return [
2, 'WEST STREET UNDERPASS',
'403', 43.164531, -80.251582, '1963', '2014', '2007', 4,
[12.2, 18.0, 18.0, 12.2], 61.0, '04/13/2012',
[['2013', '2012', '2011', '2010', '2009', '2008', '2007',
'2006', '2005', '2004', '2003', '2002', '2001', '2000'],
[MISSING_BCI, 71.5, MISSING_BCI, 68.1, MISSING_BCI, 69.0, MISSING_BCI,
69.4, MISSING_BCI, 69.4, MISSING_BCI, 70.3, 73.3, MISSING_BCI]]
]
 
 
def create_example_bridge_3() -> list:
"""Return a bridge in our list-format to use for doctest examples.
 
This bridge is the same as the bridge from row 33 of the dataset.
"""
 
return [
3, 'STOKES RIVER BRIDGE', '6',
45.036739, -81.33579, '1958', '2013', '', 1,
[16.0], 18.4, '08/28/2013',
[['2013', '2012', '2011', '2010', '2009', '2008', '2007',
'2006', '2005', '2004', '2003', '2002', '2001', '2000'],
[85.1, MISSING_BCI, 67.8, MISSING_BCI, 67.4, MISSING_BCI, 69.2,
70.0, 70.5, MISSING_BCI, 75.1, MISSING_BCI, 90.1, MISSING_BCI]]
]
 
 
def create_example_bridges() -> List[list]:
"""Return a list containing three unique example bridges.
 
The bridges contained in the list are from row 3, 4, and 33 of the dataset
(in that order).
"""
return [
create_example_bridge_1(),
create_example_bridge_2(),
create_example_bridge_3()
]
 
 
################################################################################
# Helper function
################################################################################
def calculate_distance(lat1: float, lon1: float,
lat2: float, lon2: float) -> float:
"""Return the distance in kilometers between the two locations defined by
(lat1, lon1) and (lat2, lon2), rounded to the nearest meter.
 
>>> calculate_distance(43.659777, -79.397383, 43.657129, -79.399439)
0.338
>>> calculate_distance(43.42, -79.24, 53.32, -113.30)
2713.226
"""
 
# This function uses the haversine function to find the
# distance between two locations. You do NOT need to understand why it
# works. You will just need to call on the function and work with what it
# returns.
# Based on code at goo.gl/JrPG4j
 
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = (math.radians(lon1), math.radians(lat1),
math.radians(lon2), math.radians(lat2))
 
# haversine formula t
lon_diff = lon2 - lon1
lat_diff = lat2 - lat1
a = (math.sin(lat_diff / 2) ** 2
+ math.cos(lat1) * math.cos(lat2) * math.sin(lon_diff / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
 
return round(c * EARTH_RADIUS, 3)
def map_route(bridges: List[list], lat: float, lon: float,
max_bridges: int, radius: int) -> List[int]:
"""Return the sequence of bridge IDs from bridges that must be visited
by an inspector who initially starts at location (lat, lon). The sequence
must contain at most max_bridges IDs. Every ID in the sequence must be
unique; an inspector cannot inspect the same bridge twice.
The inspector visits the bridge within radius of their location that has
the lowest most recent BCI score. The next bridge inspected is the bridge
with the lowest most BCI score within radius radius of the last
bridge's location. This step repeats until max_bridges bridges have been
inspected, or there are no bridges to inspect within radius.
>>> example_bridges = create_example_bridges()
>>> map_route(example_bridges, 43.10, -80.15, 3, 50)
[2, 1]
>>> map_route(example_bridges, 43.1, -80.5, 30, 10)
Transcribed Image Text:def map_route(bridges: List[list], lat: float, lon: float, max_bridges: int, radius: int) -> List[int]: """Return the sequence of bridge IDs from bridges that must be visited by an inspector who initially starts at location (lat, lon). The sequence must contain at most max_bridges IDs. Every ID in the sequence must be unique; an inspector cannot inspect the same bridge twice. The inspector visits the bridge within radius of their location that has the lowest most recent BCI score. The next bridge inspected is the bridge with the lowest most BCI score within radius radius of the last bridge's location. This step repeats until max_bridges bridges have been inspected, or there are no bridges to inspect within radius. >>> example_bridges = create_example_bridges() >>> map_route(example_bridges, 43.10, -80.15, 3, 50) [2, 1] >>> map_route(example_bridges, 43.1, -80.5, 30, 10)
def clean_span_data(raw_spans: str) -> List[float]:
"""Return a list of span lengths from raw spans, in the same order that
they appear in raw_spans.
Precondition:
- raw_spans is in the appropriate format (see handout for details)
>>> clean_spandata('Total-64 (1)-12;(2)-19;(3)=21;(4)-12; ')
[12.0, 19.0, 21.0, 12.0]
Transcribed Image Text:def clean_span_data(raw_spans: str) -> List[float]: """Return a list of span lengths from raw spans, in the same order that they appear in raw_spans. Precondition: - raw_spans is in the appropriate format (see handout for details) >>> clean_spandata('Total-64 (1)-12;(2)-19;(3)=21;(4)-12; ') [12.0, 19.0, 21.0, 12.0]
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY