How do you solve problem? I'm confused about which equations to use and which variables go where. How should I think about what is going on? You have a pulley 14.6 cm in diameter and with a mass of 1.9 kg. You get to wondering whether the pulley is uniform. That is, is the mass evenly distributed, or is it concentrated toward the center or the rim? To find out, you hang the pulley on a hook, wrap a string around it several times, and suspend your 1.2 kg physics book 1.5 m above the floor. With your stopwatch, you can find that it takes 0.62 s for your book to hit the floor. Use g=9.8 m/s2. a) What is the moment of inertia if the pulley is uniform? b) What is the actual moment of inertia of the pulley based on your measurement? c) Is the pulley uniform (within 1% of uniform), is the mass of the pulley concentrated toward the center, or is the mass concentrated toward the rim?
How do you solve problem? I'm confused about which equations to use and which variables go where. How should I think about what is going on?
You have a pulley 14.6 cm in diameter and with a mass of 1.9 kg. You get to wondering whether the pulley is uniform. That is, is the mass evenly distributed, or is it concentrated toward the center or the rim? To find out, you hang the pulley on a hook, wrap a string around it several times, and suspend your 1.2 kg physics book 1.5 m above the floor. With your stopwatch, you can find that it takes 0.62 s for your book to hit the floor. Use g=9.8 m/s2.
a) What is the moment of inertia if the pulley is uniform?
b) What is the actual moment of inertia of the pulley based on your measurement?
c) Is the pulley uniform (within 1% of uniform), is the mass of the pulley concentrated toward the center, or is the mass concentrated toward the rim?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps