How do states stack up against each other in SAT scores? To compare State 1 and State 2 scores, random samples of 100 students from each state were selected and their SAT scores recorded with the following results. (Use ₁ for State 1 and ₂ for State 2.) Sample Size Standard Deviation 100 196 100 163 State State 1 State 2 Mean ܕ ܐ 1,124 1,049 (a) Use the critical value approach to test for a significant difference in the average SAT scores for these two states at the 5% level of significance. State the null and alternative hypotheses. O Ho: (1₂ - 1₂) = 0 versus H₂: (₁H₂) > 0 O Ho: (H₂-H₂) <0 versus H₂: (₁H₂) > 0 Ho: (H₁-H₂) = 0 versus H₂: (H₁-H₂) = 0 O Ho: (H₁-H₂) = 0 versus H₂: (#₁ #₂) <0 O Ho: (H₂-H₂) = 0 versus H₂: (H₁-H₂) = 0 Find the test statistic. (Round your answer to two decimal places.) Find the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the unused region.) State your conclusion. O Ho is rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is not rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is not rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states. (b) Use the p-value approach to test for a significant difference in the average SAT scores for these two states. (Use a = 0.05.) Find the p-value. (Round your answer to four decimal places.) p-value= If you were writing a research report, how would you report your results? The null hypothesis ---Select--- rejected. There is ---Select--- evidence to conclude that (₂-₂) ?~0.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

I need help with all parts of this question 21, 
For B the first option is is or is not
the second option is sufficent or insufficient

and the third options is equal sign, plus minus or greater or less than

How do states stack up against each other in SAT scores? To compare State 1 and State 2 scores, random samples of 100 students from each state were selected and their SAT scores recorded with the following results. (Use ₁ for State 1 and ₂ for State 2.)
Sample
Size
Standard
Deviation
100
196
100
163
State
State 1
State 2
Z >
Mean
(a) Use the critical value approach to test for a significant difference in the average SAT scores for these two states at the 5% level of significance.
State the null and alternative hypotheses.
O Hoi (M₁M₂) = 0 versus H₂: (μ₁ −µ₂) > O
O Ho: (M₁M₂) < 0 versus Ha: (M₁ - H₂) > O
O Ho: (M₁
-
M₂) = 0 versus H₂: (M₁ - H₂) * 0
O Ho: (M₁ M₂) = 0 versus H₂: (μ₁ −μ₂) < 0
O Hoi (M₁M₂) # 0 versus H₂: (μ₁ −μ₂) = 0
Z <
1,124
1,049
Find the test statistic. (Round your answer to two decimal places.)
z =
Find the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the unused region.)
State your conclusion.
O Ho is rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states.
O Ho is rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states.
O Ho is not rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states.
O Ho is not rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states.
(b) Use the p-value approach to test for a significant difference in the average SAT scores for these two states. (Use a = 0.05.)
Find the p-value. (Round your answer to four decimal places.)
p-value =
If you were writing a research report, how would you report your results?
The null hypothesis ---Select--- rejected. There is ---Select--- evidence to conclude that (μ₁ - H₂) ? ~ 0.
Transcribed Image Text:How do states stack up against each other in SAT scores? To compare State 1 and State 2 scores, random samples of 100 students from each state were selected and their SAT scores recorded with the following results. (Use ₁ for State 1 and ₂ for State 2.) Sample Size Standard Deviation 100 196 100 163 State State 1 State 2 Z > Mean (a) Use the critical value approach to test for a significant difference in the average SAT scores for these two states at the 5% level of significance. State the null and alternative hypotheses. O Hoi (M₁M₂) = 0 versus H₂: (μ₁ −µ₂) > O O Ho: (M₁M₂) < 0 versus Ha: (M₁ - H₂) > O O Ho: (M₁ - M₂) = 0 versus H₂: (M₁ - H₂) * 0 O Ho: (M₁ M₂) = 0 versus H₂: (μ₁ −μ₂) < 0 O Hoi (M₁M₂) # 0 versus H₂: (μ₁ −μ₂) = 0 Z < 1,124 1,049 Find the test statistic. (Round your answer to two decimal places.) z = Find the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the unused region.) State your conclusion. O Ho is rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is not rejected. There is insufficient evidence to indicate that there is a difference in the average SAT scores for the two states. O Ho is not rejected. There is sufficient evidence to indicate that there is a difference in the average SAT scores for the two states. (b) Use the p-value approach to test for a significant difference in the average SAT scores for these two states. (Use a = 0.05.) Find the p-value. (Round your answer to four decimal places.) p-value = If you were writing a research report, how would you report your results? The null hypothesis ---Select--- rejected. There is ---Select--- evidence to conclude that (μ₁ - H₂) ? ~ 0.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman