how do i start using the class notes

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
how do i start using the class notes
Newton's seconl law of motice gives the egation of tion for a long light exibie string, see
enatioe (14) of Chopter 2 in or test. We nd that all wwes wel, bat if we oontine the wve
te a slaguer cl a, <<L. then waven telag in oppunite diects in he space ce a
"standing wae which appees to be going owle. Aing the string in fanl with sero
pirude ats, but free to oillate atsL find all the sohtions of the stunding wve probim
Provide a covicing plysical arguent kr the bedary condition at =L Fiad the plase
laetor eaàlutioa ig the oacillatione beau at see
plitale at t-a
Cons
on dimunsiona madion?
gstens of manny Dor
Shing's timsion is To.
to lave ao
Countably infenst, sot t of eliman te of he sut
be pat in t5 a one-on- one conmasp Senee with the Zi tigen
24. shope of shing
Umcountabdy in fantte sad : mambere of the sat
Comespond to ALL dements of TR
string under temsion: To
O agume a string has a whifarm mass densit
O (weigh sting /7 =m
Te Cas Oe > T, easə Engunes no motion of Am
along z.
D= 2R
T, Cos On Ž To
Tz Cas Oz E To
seles Nowitons and low fon infåristasimal she d
Fret = Te sim O - T, sim @,
= T2 Cos Oz tam Oz-T, Cos O, tan Ai
= To tan Oz-To ten Oo
Good approximation L >>>0z
Jap lano
distance
T. J2 0
- To ə4
=zz →アー)
aY - dupand abaut zi. Expand w/Taglen.
ze
-2.)
se due = due
In linaan appnarimatióon: Antiaipoding lim Zzes 2,
Eanlier we naive lose [P] = ks when
ん
2.
21
fon a Bineen systen Pik
Fret To Az y sames we hove Let Zz > Z, .
Sabetitut P (4) inte the DE
Lt's go all lle way to taking the limit of a
finitnad fon a2 :
「vュ
Thne is a charoctuiste speed for al
Y (ーレとSr
ate
DE is salistied
Jzソ
Transcribed Image Text:Newton's seconl law of motice gives the egation of tion for a long light exibie string, see enatioe (14) of Chopter 2 in or test. We nd that all wwes wel, bat if we oontine the wve te a slaguer cl a, <<L. then waven telag in oppunite diects in he space ce a "standing wae which appees to be going owle. Aing the string in fanl with sero pirude ats, but free to oillate atsL find all the sohtions of the stunding wve probim Provide a covicing plysical arguent kr the bedary condition at =L Fiad the plase laetor eaàlutioa ig the oacillatione beau at see plitale at t-a Cons on dimunsiona madion? gstens of manny Dor Shing's timsion is To. to lave ao Countably infenst, sot t of eliman te of he sut be pat in t5 a one-on- one conmasp Senee with the Zi tigen 24. shope of shing Umcountabdy in fantte sad : mambere of the sat Comespond to ALL dements of TR string under temsion: To O agume a string has a whifarm mass densit O (weigh sting /7 =m Te Cas Oe > T, easə Engunes no motion of Am along z. D= 2R T, Cos On Ž To Tz Cas Oz E To seles Nowitons and low fon infåristasimal she d Fret = Te sim O - T, sim @, = T2 Cos Oz tam Oz-T, Cos O, tan Ai = To tan Oz-To ten Oo Good approximation L >>>0z Jap lano distance T. J2 0 - To ə4 =zz →アー) aY - dupand abaut zi. Expand w/Taglen. ze -2.) se due = due In linaan appnarimatióon: Antiaipoding lim Zzes 2, Eanlier we naive lose [P] = ks when ん 2. 21 fon a Bineen systen Pik Fret To Az y sames we hove Let Zz > Z, . Sabetitut P (4) inte the DE Lt's go all lle way to taking the limit of a finitnad fon a2 : 「vュ Thne is a charoctuiste speed for al Y (ーレとSr ate DE is salistied Jzソ
clas spae.
If N. Const. then
Sepatim of vninhles : Mz4)= A(@) en
- A/2), GIB) → p(2,4) =A(2)B14)
Racemmended to e "aparatinn of vaniadehs? to
selve the LDE.
de = FV We love a traveling wo e squation.
afe
firnd
6-6 (wt +e) = Cas (6sd +e) (cloies)
Satatitt the sum into Hle LDE
dz
26--0 sim (st +6)
Simco as(0) = 1 then anly Alz) = A sim (kz)
- w*AlZ) cos(wd +6) -VV Cas lest +6) aA
Alz=0) -0
Alz-L):0
nte
PE A Rove wnits "melng"
KZ= [x][z] • nadians
Treuking
-AU waves are
¥AO
2]: mitns =LE]= radians
Waves
trowbing
Standing
DA+@ A(2) - 0 Cundaig canditions (o
Bounday candistions
Asin(k-L) =0
wave (spacial case of treuding waves)
- The wave is canfinied muchenically to a
fru - firet
fnse - free
Znos of ane
haois timl
An 2L
Al2)- Asin (knz)
n-2 2 L h=2:k2 = .
2
%23
dA = KnA Cas(knz)
h=3 dz=3L no3:Kg=
-kň A simlkn Z)
dzz
- kň A sim (Knz) + (Wn A sim (Knz)
Ku= 22 =
%3DL
U =fndn
Kn >o
Kn- Wn
V- Wn
Fn
2ntn
Wn
Transcribed Image Text:clas spae. If N. Const. then Sepatim of vninhles : Mz4)= A(@) en - A/2), GIB) → p(2,4) =A(2)B14) Racemmended to e "aparatinn of vaniadehs? to selve the LDE. de = FV We love a traveling wo e squation. afe firnd 6-6 (wt +e) = Cas (6sd +e) (cloies) Satatitt the sum into Hle LDE dz 26--0 sim (st +6) Simco as(0) = 1 then anly Alz) = A sim (kz) - w*AlZ) cos(wd +6) -VV Cas lest +6) aA Alz=0) -0 Alz-L):0 nte PE A Rove wnits "melng" KZ= [x][z] • nadians Treuking -AU waves are ¥AO 2]: mitns =LE]= radians Waves trowbing Standing DA+@ A(2) - 0 Cundaig canditions (o Bounday candistions Asin(k-L) =0 wave (spacial case of treuding waves) - The wave is canfinied muchenically to a fru - firet fnse - free Znos of ane haois timl An 2L Al2)- Asin (knz) n-2 2 L h=2:k2 = . 2 %23 dA = KnA Cas(knz) h=3 dz=3L no3:Kg= -kň A simlkn Z) dzz - kň A sim (Knz) + (Wn A sim (Knz) Ku= 22 = %3DL U =fndn Kn >o Kn- Wn V- Wn Fn 2ntn Wn
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Unit conversion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON