How do I recode/convert values in a data frame from non-numeric to binary "TRUE" "FALSE", in Rstudio

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

How do I recode/convert values in a data frame from non-numeric to binary "TRUE" "FALSE", in Rstudio

R RStudio
File Edit
Code View Plots
Session Build Debug Profile
Tools Help
A Go to file/function
BA - Addins -
R Project: (None) -
O Project 5 Logistic Modeling.R* *
Environment
History
Connections
Tutor aO
a A O Source on Save
9 required<-c("gtools")
Run
+ Source -
* Import Dataset -
List -
Global Environment-
10
11 installed<-installed. packages () [, 'Package']
Data
12
O wibc
699 obs. of 12 varia.m
13 for (pkg in required)
14 - {
values
if (!pkg %in% installed)
{
cat ("Installing package:", pkg, "\n")
install.packages (pkg)
}
chr [1:699] "benign" "..
chr [1:699] "benign" "..
installed chr [1:113] "asserttha.
15
A
16 -
class
17
18
pkg
required
"gtools"
"gtools"
19 -
20
cat ("Loading package", pkg, "\n")
require(pkg, character.onīy=TRUE)
21
sourcepir ""
22
23 - }
24
25
26 # load dataset
27
28 wibc<-read.csv("WI_breast_cancer.csv")
29
30
# let's see what the data look 1like
31
#3
32 head (wibc)
str (wibc)
33
34
Files
Plots
Packages
Help
Viewer
# recode categorical variables for use with glm procedure. Convert "malignant" to TRUE
# and "benign" to FALSE. Copy data frame and add new "malignancy" column.
class<-wibcsclass
class
35
36
C Refresh
37
R: The F Distribution -
Find in Topic
38
39
FDist {stats}
R Documentation
40
# ADD YOUR CODE HERE
n = 1
wibc2 = cbind (wibc,replicate(n,wibc$class))
wibc2
colnames (wibc2)<-c("x", "Id", "cl. thickness","cell.size","cell. shape","Marg. adhesion", "Epith.c.size","Bare.nuclei","B1.cromatin", "Normal.nucleoli", "Mitoses", "class", "malignancy")
41
42
The F Distribution
43
44
45
Description
46 head (wibc2)
str(wihc2)
47
Density, distribution function, quantile function
and random generation for the F distribution
with dfl and df2 degrees of freedom (and
optional non-centrality parameter ncp)
39:1
(Top Level) :
R Script :
Console
Terminal x
Jobs x
+ }
Loading package gtools
Loading required package: gtools
> wibc<-read.csv("WI_breast_cancer.csv")
# let's see what the data look 1ike
> #
> head (wibc)
Usage
df (x, df1, df2, ncp, log = FALSE)
pf (g, df1, df2, ncp,
gf (p, df1, df2, ncp,
lower.tail = T!
lower.tail = T!
rf (n, df1, df2, ncp)
Id cl.thickness cell.size cell.shape Marg. adhesion Epith.c.size Bare. nuclei B1.cromatin Normal.nucleoli Mitoses
class
Arguments
11 1000025
2 2 1002945
3 3 1015425
benign
benign
benign
benign
benign
1 malignant
10
1.
1
х, ч
vector of quantiles.
4 4 1016277
8.
8
4
1.
vector of probabilities.
5 5 1017023
6 6 1017122
> str (wibc)
'data. frame':
$ X
4
1.
1.
1.
10
10
10
number of observations. If
length (n) > 1, the length
is taken to be the number
699 obs. of 12 variables:
: int
1 2 3 4 5 6 7 8 9 10 ...
1000025 1002915 1015425 1016277 1017023 1017122 1018000 1018561
103307g
1033078
Transcribed Image Text:R RStudio File Edit Code View Plots Session Build Debug Profile Tools Help A Go to file/function BA - Addins - R Project: (None) - O Project 5 Logistic Modeling.R* * Environment History Connections Tutor aO a A O Source on Save 9 required<-c("gtools") Run + Source - * Import Dataset - List - Global Environment- 10 11 installed<-installed. packages () [, 'Package'] Data 12 O wibc 699 obs. of 12 varia.m 13 for (pkg in required) 14 - { values if (!pkg %in% installed) { cat ("Installing package:", pkg, "\n") install.packages (pkg) } chr [1:699] "benign" ".. chr [1:699] "benign" ".. installed chr [1:113] "asserttha. 15 A 16 - class 17 18 pkg required "gtools" "gtools" 19 - 20 cat ("Loading package", pkg, "\n") require(pkg, character.onīy=TRUE) 21 sourcepir "" 22 23 - } 24 25 26 # load dataset 27 28 wibc<-read.csv("WI_breast_cancer.csv") 29 30 # let's see what the data look 1like 31 #3 32 head (wibc) str (wibc) 33 34 Files Plots Packages Help Viewer # recode categorical variables for use with glm procedure. Convert "malignant" to TRUE # and "benign" to FALSE. Copy data frame and add new "malignancy" column. class<-wibcsclass class 35 36 C Refresh 37 R: The F Distribution - Find in Topic 38 39 FDist {stats} R Documentation 40 # ADD YOUR CODE HERE n = 1 wibc2 = cbind (wibc,replicate(n,wibc$class)) wibc2 colnames (wibc2)<-c("x", "Id", "cl. thickness","cell.size","cell. shape","Marg. adhesion", "Epith.c.size","Bare.nuclei","B1.cromatin", "Normal.nucleoli", "Mitoses", "class", "malignancy") 41 42 The F Distribution 43 44 45 Description 46 head (wibc2) str(wihc2) 47 Density, distribution function, quantile function and random generation for the F distribution with dfl and df2 degrees of freedom (and optional non-centrality parameter ncp) 39:1 (Top Level) : R Script : Console Terminal x Jobs x + } Loading package gtools Loading required package: gtools > wibc<-read.csv("WI_breast_cancer.csv") # let's see what the data look 1ike > # > head (wibc) Usage df (x, df1, df2, ncp, log = FALSE) pf (g, df1, df2, ncp, gf (p, df1, df2, ncp, lower.tail = T! lower.tail = T! rf (n, df1, df2, ncp) Id cl.thickness cell.size cell.shape Marg. adhesion Epith.c.size Bare. nuclei B1.cromatin Normal.nucleoli Mitoses class Arguments 11 1000025 2 2 1002945 3 3 1015425 benign benign benign benign benign 1 malignant 10 1. 1 х, ч vector of quantiles. 4 4 1016277 8. 8 4 1. vector of probabilities. 5 5 1017023 6 6 1017122 > str (wibc) 'data. frame': $ X 4 1. 1. 1. 10 10 10 number of observations. If length (n) > 1, the length is taken to be the number 699 obs. of 12 variables: : int 1 2 3 4 5 6 7 8 9 10 ... 1000025 1002915 1015425 1016277 1017023 1017122 1018000 1018561 103307g 1033078
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Huffman coding
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education