How can Vieta's methods be applied to determine all the roots of the polynomial f(x)=x^3−3x^2−1after the Newton-Raphson method has already obtained the root x=3.1038 with a precision of 10−4?
How can Vieta's methods be applied to determine all the roots of the polynomial f(x)=x^3−3x^2−1after the Newton-Raphson method has already obtained the root x=3.1038 with a precision of 10−4?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
How can Vieta's methods be applied to determine all the roots of the polynomial f(x)=x^3−3x^2−1after the Newton-Raphson method has already obtained the root x=3.1038 with a precision of 10−4?
![To Find: Roots of polynomial to a precision of 10-4
Given f(x) = x²³-3x²-1. ε = 10-4
E
Using Newton-Raphson method,
f(x)
Formula used:
Хан Хи-
1
1
ха
f (xn)
1st iteration: n =o
x₁ = x₁= f (xo)
f'(xo)
f'(x)
= x3-
3rd iteration: n=2
x3 = x₂- f (x₂)
f'(x₂)
f(3)= -1 <0
f (4) = 15>0
Root lies between 3 and 4
3+4
3,5
xo
2nd iteration: n=1
x₂ = x₁ - f (x₁) = 3.1146-
f'(x₁)
: 3.5- f (3.5) 3.5- 5.125
15.75
f (3.5)
4th iteration; n = 3;
f (x3)
f'(x3)
f(x) = x³ 3x²-1
f'(x) = _d (x²³²-3x²-1) = 3x²³²-6x
dx
= 3.10669-
f(3.1746)
f(3-1746)
3
= 3-10381 -
= 3.10669
f(3.10669)
f'(3.10669)
f(3.10381)
f'(3.10381)
= 3.1746
= 3.10381
= 3.1038
114-31 = 13.1038-3.10381 | ≤ 10 = E
+
Root obtained with accuracy & = 10 + after 4
iterations, x ~3.1038.
:: Root of polynomial, ~3.1038.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8b24b2b8-446c-4723-b41c-2fea360dad98%2F5fbed189-35fd-4252-9eca-5499d38c43ca%2Fpomwytd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:To Find: Roots of polynomial to a precision of 10-4
Given f(x) = x²³-3x²-1. ε = 10-4
E
Using Newton-Raphson method,
f(x)
Formula used:
Хан Хи-
1
1
ха
f (xn)
1st iteration: n =o
x₁ = x₁= f (xo)
f'(xo)
f'(x)
= x3-
3rd iteration: n=2
x3 = x₂- f (x₂)
f'(x₂)
f(3)= -1 <0
f (4) = 15>0
Root lies between 3 and 4
3+4
3,5
xo
2nd iteration: n=1
x₂ = x₁ - f (x₁) = 3.1146-
f'(x₁)
: 3.5- f (3.5) 3.5- 5.125
15.75
f (3.5)
4th iteration; n = 3;
f (x3)
f'(x3)
f(x) = x³ 3x²-1
f'(x) = _d (x²³²-3x²-1) = 3x²³²-6x
dx
= 3.10669-
f(3.1746)
f(3-1746)
3
= 3-10381 -
= 3.10669
f(3.10669)
f'(3.10669)
f(3.10381)
f'(3.10381)
= 3.1746
= 3.10381
= 3.1038
114-31 = 13.1038-3.10381 | ≤ 10 = E
+
Root obtained with accuracy & = 10 + after 4
iterations, x ~3.1038.
:: Root of polynomial, ~3.1038.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)