How can healthcare providers ensure equitable access to expensive technologies that not only treat illnesses but also promise to promote longevity and enhance patients’ quality of life?
Q: Answer the two parts of the question. a) Explain what gene therapy involves. b) Discuss how gene…
A: Gene therapy presents one of the best technical difficulties in current medicine. It is…
Q: In a world of advancing technologies and innovative health care, some individuals would rather rely…
A: Gene therapy is an experimental technique in which genes are used to treat or prevent diseases or…
Q: Watch this brief video section on a researcher discussing the experimental design for a cancer…
A: This study is meant to answer a research question on the efficacy of a new cancer vaccination in…
Q: What is metrology? How does metrology relate to Analytical Biotechnology? Relate the terms error…
A: In the realm of scientific measurement, metrology stands as a cornerstone, shaping the precision and…
Q: How might we, as epidemiologists, increase the validity of genetic studies? What recommendations do…
A: Epidemiology is considered a branch of medical science that deals with the identification and…
Q: Increasingly, whole-genome sequencing of individuals is being done to help identify and treat…
A: Whole genome sequencing technique is done to sequence all the genes present in the genome of the…
Q: 1. the process of producing individuals with identical or virtually identical DNA, either naturally…
A: According to the European Federation of Biotechnology, Biotechnology is the integration of natural…
Q: how does systems thinking, critical analysis, and other ethical, evidence-based decision-making…
A: The objective of the question is to understand the impact of systems thinking, critical analysis,…
A) Ensuring Equal Access to Customized Medicine
- How can healthcare providers ensure equitable access to expensive technologies that not only treat illnesses but also promise to promote longevity and enhance patients’ quality of life?
- What are the ethics of cost/benefit analyses when human lives are at stake?
- What policies could help avoid “genetic discrimination” when medical test results reveal conditions or genetic susceptibilities to specific diseases that weren’t the subject of the original tests?

Trending now
This is a popular solution!
Step by step
Solved in 2 steps

- Identify a possible advantage and a possible disadvantage of a genetic test that would identify genes in individuals that increase their probability of having Alzheimer’s disease later in life.James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do James and Sally have any guarantees that the tests and recommendations are scientifically valid?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think that companies should be allowed to market such tests directly to the public, or do you believe that only a physician should be able to order them?
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. What kinds of regulations, if any, should be in place to ensure that the results of these tests are not abused?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think parents should be able to order such a test for their children? What if the test indicates that a child is at risk for a disease for which there is no known cure?Should he go ahead and enroll on the chance that he would receive the DNA vaccine and that it would be more effective than chemotherapy? Bruce and his parents moved to a semi-tropical region of the United States when he was about 3 years old. He loved to be outside year-round and swim, surf, snorkel, and play baseball. Bruce was fair-skinned, and in his childhood years, was sunburned quite often. In his teen years, he began using sunscreens, and although he never tanned very much, he did not have the painful sunburns of his younger years. After graduation from the local community college, Bruce wanted an outdoor job and was hired at a dive shop. He took people out to one of the local reefs to snorkel and scuba dive. He didnt give a second thought to sun exposure because he used sunscreen. His employer did not provide health insurance, so Bruce did not go for annual checkups, and tried to stay in good health. In his late 20s, Bruce was injured trying to keep a tourist from getting caught between the dive boat and the dock. He went to an internist, who treated his injury and told Bruce he was going to give him a complete physical exam. During the exam, the internist noticed a discolored patch of skin on Bruces back. She told him that she suspected Bruce had skin cancer and referred him to a dermatologist, who biopsied the patch. At a follow-up visit, Bruce was told that he had melanoma, a deadly form of skin cancer. Further testing revealed that the melanoma had spread to his liver and his lungs. The dermatologist explained that treatment options at this stage are limited. The drugs available for chemotherapy have only temporary effects, and surgery is not effective for melanoma at this stage. The dermatologist recommended that Bruce consider entering a clinical trial that was testing a DNA vaccine for melanoma treatment. These vaccines deliver DNA encoding a gene expressed by the cancer cells to the immune system. This primes the immune system to respond by producing large quantities of antibodies that destroy melanoma cells wherever they occur in the body. A clinical trial using one such DNA vaccine was being conducted at a nearby medical center, and Bruce decided to participate. At the study clinic, Bruce learned that he would be in a Phase Ill trial, comparing the DNA vaccine against the standard treatment, which is chemotherapy, and that he would be randomly assigned to receive either the DNA vaccine or the chemotherapy. He was disappointed to learn this. He thought he would be receiving the DNA vaccine.
- Studies have shown that there are significant differences in cancer rates among different ethnic groups. For example, the Japanese have very high rates of colon cancer but very low rates of breast cancer. It has also been demonstrated that when members of low-risk ethnic groups move to high-risk areas, their cancer risks rise to those of the high-risk area. For example, Japanese who live in the United States, where the risk of breast cancer is high, have higher rates of breast cancer than do Japanese who live in Japan. What are some of the possible explanations for this phenomenon? What factors may explain why the Japanese have higher rates of colon cancer than do other ethnic groups?Do you think the way this issue was handled should be a model for future situations involving potential dangers that might arise from research methods or results?Mary and Marcie. identical twins, go to the same internist who is also a faculty member at a major medical center. At their last visit, they each received a brochure describing a genetics research program recently launched by the hospital and its affiliated university. Researchers were asking for volunteers to fill out a questionnaire and a consent form, donate a blood sample, and have their medical records encoded and transferred to a database. The goal was to enroll 100,000 participants, and the brochure noted that over 10,000 people had already agreed to participate. The blood sample would be used to extract DNA. which would be encoded with the same number as the medical records. This DNA would be used to search for genes associated with conditions such as arthritis, diabetes, and Alzheimer disease. The idea is that researchers interested in studying arthritis would use the medical records to identify which participants have the condition and then use DNA from those individuals to find genetic similarities that are not present in participants who do not have arthritis. The genetic similarities help identify regions of the genome that contain genes associated with arthritis. These regions can then be studied in detail to identify and isolate genes that may be associated with arthritis and other inflammatory disorders. In exchange for enrolling, participants would be informed about any genetic conditions or predispositions to genetic disease they carry and would receive free access to testing. After discussing the brochure. Mary decided to enroll, but Marcie decided she did not want to do so. She said she did not want to know what diseases she may develop or which disease genes she may carry. At their next annual visit. Marys internist told her that because her questionnaire indicated that some relatives had Alzheimer disease, her DNA was used in a study to identify risk genes. He said she had been identified as a carrier of a gene that greatly increased the likelihood that she would develop Alzheimer disease. The physician told her that age was the greatest risk factor, and while it was not 100% certain she would become a victim of Alzheimer disease, the gene she carries is a factor in 2025% of all cases. Mary asked if there was anything she could do about these findings. The internist told her that exercise, controlling blood pressure and cholesterol levels, as well as participating in mentally challenging activities such as reading or playing a musical instrument may all help reduce her chances of developing this disease. Mary then asked if Marcie was going to be told about Marys genetic risk, and the internist said that he would not tell her. For the next few days. Mary was conflicted about the situation. Marcie was an Identical twin, and If Mary carried a gene predisposing her to Alzheimer disease. Marcie must carry the same gene. Marcie did not exercise with Mary, had high blood pressure, and little interest in reading or social activities. Mary did not know whether she should tell Marcie. If you were advising Mary, what would you say? Should she tell Marcie about the risk? Should she not tell her, but instead try to get Marcie to exercise and be more social? Should Mary ask their internist to talk with Marcie about this?
- Two genes associated with breast cancer, BRCA1 and BRCA2, were discovered in 1994 and 1995, respectively, and shortly thereafter, were patented by Myriad Genetics, a company based in Utah. Under the patents, testing for mutations in these genes could only be performed by Myriad, at costs from 300 to 3,000. Myriad also patented the process of analyzing the results of such tests, preventing anyone who obtains the sequence of their BRCA genes by other means (which itself would probably be patent infringement) from interpreting the information. The idea that genes can be patented has been a contentious issue from the beginning. Patents are not granted for products of nature, meaning that genes inside the body are not patentable, but biotech companies successfully argued that by removing a gene from the human body, purifying it, and then obtaining its DNA sequence, they created something not found in nature, and which is therefore a patentable invention. The U.S. Patent Office found the argument persuasive, but opponents argue that genes are parts of our bodies and can be identified but not invented. Biotech companies argue that without the protection offered by patents, they would have no incentive for research and development of diagnostic tests. In Europe, patents for BRCA1 and BRCA2 were revoked in 2004 because they did not meet the standards for a patent. After more than a decade of legal disputes, the patents were partially restored in 2008 on a very restricted basis. In the United States, a lawsuit, focused on the patents for the BRCA genes, was filed in May 2009. The suit challenges the basic idea that genes are patentable. In November 2009, the judge ruled that the lawsuit can proceed, and the case is moving forward. In March 2010, a federal court invalidated Myriad Genetics patent on these genes. In August 2011, the U.S. Court of Appeals reversed the lower courts decision and ruled that gene sequences isolated from cells are not a product of nature and are therefore patentable. The case went to the U.S. Supreme Court, which ordered the appeals court to reconsider the case. The Federal Appeals Court did not change its decision, and the case once again, went to the U.S. Supreme Court. A unanimous decision in June 2013 invalidated Myriads patents on the basis that isolating a gene from nature does not make it patentable. This is a landmark decision on gene patenting with widespread ramifications for the biotechnoloogy industry. Will this decision reduce the incentives for companies to invest in new diagnostic tests that would be used by cancer victims or those with serious genetic disorders?SCIENCE, TECHNOLOGY, AND SOCIETY Imagine that you are a genetic counselor. What advice or suggestions might you give in the following situations? (a) A couple has come for advice because the woman had a sister who died of Tay-Sachs disease. (b) A young man and woman who are not related are engaged to be married. However, they have learned that the mans parents are first cousins, and they are worried about the possibility of increased risk of genetic defects in their own children. (c) A young womans paternal uncle (her fathers brother) has hemophilia A. Her father is free of the disease, and there has never been a case of hemophilia A in her mothers family. Should she be concerned about the possibility of hemophilia A in her own children? (d) A 20-year-old man is seeking counseling because his father was recently diagnosed with Huntingtons disease. (e) A 45-year-old woman has just been diagnosed with Huntingtons disease. She says she will not tell her college-age sons because of the burden it will place on them. Given that the woman, not her sons, is your client, do you have a duty to inform the sons? Explain your reasoning.We each carry 20,000 genes in our genome. Genes can be patented, and over 6,000 human genes have been patented. Do you think that companies or individuals should be able to patent human genes? Why or why not?









