Hot combustion gases enter the nozzle of a turbojet engine at 250 kPa, 650°C, and 70 m/s and exit at 80 kPa and 420°C. The mass flow rate is 1.2 kg/s. Assume the heat losses to the surroundings is 90kW and the surroundings is at 27°C. Determine (a) the exit velocity and (b) the decrease in the exergy of the gases. Take k = 1.3 and c, = 1.15 kJ/kg-°C for the combustion gases.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

I have asked this question but it was rejected. I am submitting the problems to check my understanding. This problem is from an older exam that I am using as practice and I am not being graded on them.

If you are able to, please state your assumptions and table.

Hot combustion gases enter the nozzle of a turbojet engine at 250 kPa, 650°C, and 70 m/s and exit at
80 kPa and 420°C. The mass flow rate is 1.2 kg/s. Assume the heat losses to the surroundings is 90kW
and the surroundings is at 27°C. Determine (a) the exit velocity and (b) the decrease in the exergy of
the gases. Take k = 1.3 and c, = 1.15 kJ/kg-°C for the combustion gases.
Transcribed Image Text:Hot combustion gases enter the nozzle of a turbojet engine at 250 kPa, 650°C, and 70 m/s and exit at 80 kPa and 420°C. The mass flow rate is 1.2 kg/s. Assume the heat losses to the surroundings is 90kW and the surroundings is at 27°C. Determine (a) the exit velocity and (b) the decrease in the exergy of the gases. Take k = 1.3 and c, = 1.15 kJ/kg-°C for the combustion gases.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Design of chemical reactors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The