Real-Time Systems concern approaches from hardware-related software development, in particular performance-optimized software development. For this purpose, a problem is set here in which a partial algorithm for calculating a discrete Fourier transformation is implemented accordingly. The discrete Fourier transform (DFT) calculates the frequencies inherent in a function over time. One can imagine that a tone, e.g. of a musical instrument, is recorded and then - after the recording - analyzed, which fundamental tones (= "height of the tone") and which harmonics (= "timbre") are contained in it. The discrete (and fast) Fourier transform (DFT, FFT) are now suitable algorithms to perform this via digital computer. The DFT now uses the sine and cosine functions and can therefore be implemented classically with floating point data types (float, double). However, the calculations with such data types are very time- consuming if no hardware support (co-processor) is available. Especially in embedded systems, this is often missing, and for performance reasons one likes to choose the implementation in the form of integer data types.
Real-Time Systems concern approaches from hardware-related software development, in particular performance-optimized software development. For this purpose, a problem is set here in which a partial algorithm for calculating a discrete Fourier transformation is implemented accordingly. The discrete Fourier transform (DFT) calculates the frequencies inherent in a function over time. One can imagine that a tone, e.g. of a musical instrument, is recorded and then - after the recording - analyzed, which fundamental tones (= "height of the tone") and which harmonics (= "timbre") are contained in it. The discrete (and fast) Fourier transform (DFT, FFT) are now suitable algorithms to perform this via digital computer. The DFT now uses the sine and cosine functions and can therefore be implemented classically with floating point data types (float, double). However, the calculations with such data types are very time- consuming if no hardware support (co-processor) is available. Especially in embedded systems, this is often missing, and for performance reasons one likes to choose the implementation in the form of integer data types.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
For statement 1 we need to capture
Solution
by Bartleby Expert
Follow-up Question
Can you please separate 2 and 3. As this quite confusing which explanation is for 2nd part and which is for 3rd part.
Solution
by Bartleby Expert
Follow-up Question
This question should be solved with help of
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education