his is a practice question, not graded assignment. Understand that to find the answer to below question, we need to solve Navier-Stokes and energy equation for this flow to derive the velocity profile and temperature profile. Please show step-by-step equations including step-by-step integration. Please also provide explanation. An incompressible fluid flows through a rectangular cross section duct, with width much larger than height of the cross section. The duct surface is heated at a uniform rate along its length. If the centreline of the flow is along the centre of the duct where y = 0, the distance from the centreline to the surface of the duct is b = 25 mm, and the thermal conductivity of the fluid is 0.6 W/mK, what is the local heat transfer coefficient in the developed region of the flow? Give your answer in W/m^2K to 1 decimal pla
This is a practice question, not graded assignment.
Understand that to find the answer to below question, we need to solve Navier-Stokes and energy equation for this flow to derive the velocity profile and temperature profile. Please show step-by-step equations including step-by-step integration. Please also provide explanation.
An incompressible fluid flows through a rectangular cross section duct, with width much larger than height of the cross section. The duct surface is heated at a uniform rate along its length. If the centreline of the flow is along the centre of the duct where y = 0, the distance from the centreline to the surface of the duct is b = 25 mm, and the thermal conductivity of the fluid is 0.6 W/mK, what is the local heat transfer coefficient in the developed region of the flow? Give your answer in W/m^2K to 1 decimal place.
Step by step
Solved in 3 steps with 10 images