Hi I have a problem on this question. How do I identify whether it's a one way anova or two way anova. And can you please show me the hand calculations methods without using Excel. Like show every step on how to do the question do that I can understand the steps clearly. Also attached the anova critical table. 2. Students were given different drug treatments before revising for their exams. Some were given memory drug, some a placebo drug and some no treatment. The exam scores (%) are shown below for three different groups: Memory drug Placebo No Treatment 70 37 3 77 43 10 83 50 17 90 57 23 97 63 30 Use ANOVA with a = .05 to determine whether there are any significant differences among three treatment means. Perform a scheffe post hoc test if null hypothesis is rejected.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Topic Video
Question

Hi I have a problem on this question. How do I identify whether it's a one way anova or two way anova. And can you please show me the hand calculations methods without using Excel. Like show every step on how to do the question do that I can understand the steps clearly. Also attached the anova critical table.

2. Students were given different drug treatments before revising for their exams. Some
were given memory drug, some a placebo drug and some no treatment. The exam
scores (%) are shown below for three different groups:

Memory drug Placebo No Treatment
70 37 3
77 43 10
83 50 17
90 57 23
97 63 30

Use ANOVA with a = .05 to determine whether there are any significant
differences among three treatment means. Perform a scheffe post hoc test if null
hypothesis is rejected.

 

PLEASE REFER TO THE FORMULA I GIVE BELOW 

ONE WAY ANOVA Hypothesis Testing
STEP 1: State the hypotheses and select an alpha level.
H0: µ1 = µ2 = µ3 (There is no treatment effect.)
H1: At least one of the treatment means is different.
We use α = .05

STEP 2: Locate the critical region.

df total = N - 1 =

df between = k - 1 = (Numerator)

df within = N – k = (Denominator)

look up in the f table: df = Numerator, Denominator, Critical region = (larger than

STEP 3: Compute the F-ratio.
SS total = ΣX^2-G^2/N =
SS within = ΣSS inside each treatment =
SS between = SS total – SS within =

Calculation of mean squares
MS between=(SS between)/(ⅆf between)
MS within=(SS within)/(ⅆf within)

Calculation of F.

F=(MS between)/(MS within)
=
STEP 4 : MAKE A DECISION
If F > F critical. Reject HO
STEP 5 EFFECT SIZE
η^2= (SS between)/(SS total)

STEP 6: IF THE RESULT IS SIGNIFICANT
Do post hoc using Scheffe Test
Step 1 find mean if not given T/How many entries in one group
Step 2 compare the groups with smallest difference ( A – B, A – C, B - C )
Step 3 Find SS between ∑T^2/n-G^2/N
Step 4 df between same as the study k – 1
Step 5 MS between = SS between / df between
Step 6 F ratio = MS between / MS within ( same as study )
If F ratio > F critical, REJECT HO AND SIGNIFICANT

The F Distribution*
*Table entries in lightface type are critical values for the 05 level of significance.
Boldface type values are for the .01 level of significance.
Criticał
Degrees of
Freedom:
Denominator
Degrees of Freedom: Numerator
3.
4
7
8
9
10
11
12
14
16
20
1
239
200
4999 5403 5625
216
230
5764
161
225
234
237
241
242
243
244
246
6106 6142 6169 6208
245
248
4052
5859
5928
5981
6022
6056
6082
19.36
19.37
19.38
19.41 19.42 19.43 19.44
99.42 99.43 99.44 99.45
2
18.51 19.00 19.16 19.25 19.30 19.33
19.39
19.40
98.49 99.00 99.17 99.25 99.30 99.33
99.34
99.36 99.38
99.40 99.41
8.88
28.24 27.91 27.67
8.94
8.84
8.81
8.69 8.66
27.23 27.13 27.05 26.92 26.83 26.69
10.13 9.55 9.28
9.12
9.01
8.78
8.76
8.74
8.71
3.
34.12 30.92 29.46 28.71
27.49 27.34
6.04
5.96
14.54 14.45 14.37 14.24 14.15 14.02
6.94
6.59
6.39
6.26
6.16
6.09
6.00
5.91
5.87
7.71
21.20 18.00 16.69 15.98
4
5.93
5.84
5.80
15.52 15.21 14.98
14.80 14.66
6.61
5.79
5.19
5.05
4.95
4.88
4.82
4.78
4.74
4.70
1.68
1.61
1.60 1.56
9.68
5
5.41
16.26 13.27 12.06 11.39 10.97 10.67 10.45
10.27 10.15
10.05
9.96
9.89
9.77
9.55
4.15
8.10
5.14 4.76
4.53
4.10
4.06
4.39
8.75
4.00
7.72
6
5.99
4.28
4.21
4.03
3.96
3.92 3.87
13.74 10.92 9.78
9.15
8.47
8.26
7.98
7.87
7.79
7.60
7.52
7.39
3.79
3.73
6.84
4.74 4.35
3.97
3.87
3.68
3.63
3.60
5.59
12.25
3.49
6.27
7
4.12
3.57
3.52
3.44
9.55 8.45
7.85
7.46
7.19
7.00
6.71
6.62
6.54
6.47
6.35
6.15
3.50
6.19
3.28
5.67
4.46 4.07
3.69
3.58
6.37
3.39
5.91
3.34
3.31
3.23
5.56
5.32
3.84
3.44
3.20
5.48
3.15
5.36
8
11.26
8.65 7.59
7.01
6.63
6.03
5.82
5.74
5.12
3.37
3.23
3.29.
5.62
3.18
3.13
3.10
3.07
5.11
4.26 3.86
3.02
3.63
6.42
9.
3.48
2.98
2.93
10.56
8.02 6.99
6.06
5.80
5.47
5.35
5.26
5.18
5.00
4.92
4.80
3.07
5.06
2.97
3.02
4.95
2.91
4.71
2.94
4.96
10.04
3.48
3.33
5.64
3.22
3.14
5.21
2.86
4.60
4.10 3.71
2.82
4.52
10
2.77
7.56 6.55
5.99
5.39
4.85
4.78
4.41
3.09
5.07
2.95
2.90
4.84
9.65
3.59
6.22
3.20
5.32
2.82
4.46
I 1
3.98
3.36
3.01
2.86
2.79
2.74
2.70 2.65
7.20
5.67
4.88
4.74
4.63
4.54
4.40
4.29
4,21
4.10
3.26
5.41
3.00
4.82
2.80
4.39
2.76
4.30
3.49
2.69
3.11
5.06
2.92
2.85
4.50
2.72
4.22
2.64
2.60 2.54
4.75
9.33
3.88
6.93 5.95
12
4.65
4.16
4.05
3.98
3.86
2.67
4.10
2.63
3.02
4.86
2.92
2.84
2.77
2.72
2.60
4.67
9.07
3.80
6.70 5.74
2.55
3.85
3.18
2.51
3.78
13
3.41
2.46
5.20
4.62
4.44
4.30
4.19
4.02
3.96
3.67
2.85
2.65
4.03
14
4.60
3.74
3.34
3.11
2.96
2.77
2.70
2.60
2.56
2.53
2.48
2.44
2.39
8.86
6.51
5.56
5.03
4.69
4.46
4.28
4.14
3.94
3.86
3.80
3.70
3.62 3.51
2.79
2.59
2.55
2.70
4.14
2.64
2.48
2.43
2.39
3.56 3.48
2.90
2.51
2.33
4.54
8.68
15
3.68
3.29
3.06
6.36
5.42
4.89
4.56
4.32
4.00
3.89
3.80
3.73
3.67
3.36
2.66
2.59
3.89
2.54
2.8.5
4.44
2.74
2.49
2.45
2.42
2.37
2.28
3.37 3.25
16
4.49
3.63
3.24
3.01
2.33
8.53
6.23
5.29
4.77
4.20
4.03
3.78
3.69
3.61
3.55
3.45
Transcribed Image Text:The F Distribution* *Table entries in lightface type are critical values for the 05 level of significance. Boldface type values are for the .01 level of significance. Criticał Degrees of Freedom: Denominator Degrees of Freedom: Numerator 3. 4 7 8 9 10 11 12 14 16 20 1 239 200 4999 5403 5625 216 230 5764 161 225 234 237 241 242 243 244 246 6106 6142 6169 6208 245 248 4052 5859 5928 5981 6022 6056 6082 19.36 19.37 19.38 19.41 19.42 19.43 19.44 99.42 99.43 99.44 99.45 2 18.51 19.00 19.16 19.25 19.30 19.33 19.39 19.40 98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 8.88 28.24 27.91 27.67 8.94 8.84 8.81 8.69 8.66 27.23 27.13 27.05 26.92 26.83 26.69 10.13 9.55 9.28 9.12 9.01 8.78 8.76 8.74 8.71 3. 34.12 30.92 29.46 28.71 27.49 27.34 6.04 5.96 14.54 14.45 14.37 14.24 14.15 14.02 6.94 6.59 6.39 6.26 6.16 6.09 6.00 5.91 5.87 7.71 21.20 18.00 16.69 15.98 4 5.93 5.84 5.80 15.52 15.21 14.98 14.80 14.66 6.61 5.79 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 1.68 1.61 1.60 1.56 9.68 5 5.41 16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89 9.77 9.55 4.15 8.10 5.14 4.76 4.53 4.10 4.06 4.39 8.75 4.00 7.72 6 5.99 4.28 4.21 4.03 3.96 3.92 3.87 13.74 10.92 9.78 9.15 8.47 8.26 7.98 7.87 7.79 7.60 7.52 7.39 3.79 3.73 6.84 4.74 4.35 3.97 3.87 3.68 3.63 3.60 5.59 12.25 3.49 6.27 7 4.12 3.57 3.52 3.44 9.55 8.45 7.85 7.46 7.19 7.00 6.71 6.62 6.54 6.47 6.35 6.15 3.50 6.19 3.28 5.67 4.46 4.07 3.69 3.58 6.37 3.39 5.91 3.34 3.31 3.23 5.56 5.32 3.84 3.44 3.20 5.48 3.15 5.36 8 11.26 8.65 7.59 7.01 6.63 6.03 5.82 5.74 5.12 3.37 3.23 3.29. 5.62 3.18 3.13 3.10 3.07 5.11 4.26 3.86 3.02 3.63 6.42 9. 3.48 2.98 2.93 10.56 8.02 6.99 6.06 5.80 5.47 5.35 5.26 5.18 5.00 4.92 4.80 3.07 5.06 2.97 3.02 4.95 2.91 4.71 2.94 4.96 10.04 3.48 3.33 5.64 3.22 3.14 5.21 2.86 4.60 4.10 3.71 2.82 4.52 10 2.77 7.56 6.55 5.99 5.39 4.85 4.78 4.41 3.09 5.07 2.95 2.90 4.84 9.65 3.59 6.22 3.20 5.32 2.82 4.46 I 1 3.98 3.36 3.01 2.86 2.79 2.74 2.70 2.65 7.20 5.67 4.88 4.74 4.63 4.54 4.40 4.29 4,21 4.10 3.26 5.41 3.00 4.82 2.80 4.39 2.76 4.30 3.49 2.69 3.11 5.06 2.92 2.85 4.50 2.72 4.22 2.64 2.60 2.54 4.75 9.33 3.88 6.93 5.95 12 4.65 4.16 4.05 3.98 3.86 2.67 4.10 2.63 3.02 4.86 2.92 2.84 2.77 2.72 2.60 4.67 9.07 3.80 6.70 5.74 2.55 3.85 3.18 2.51 3.78 13 3.41 2.46 5.20 4.62 4.44 4.30 4.19 4.02 3.96 3.67 2.85 2.65 4.03 14 4.60 3.74 3.34 3.11 2.96 2.77 2.70 2.60 2.56 2.53 2.48 2.44 2.39 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 3.94 3.86 3.80 3.70 3.62 3.51 2.79 2.59 2.55 2.70 4.14 2.64 2.48 2.43 2.39 3.56 3.48 2.90 2.51 2.33 4.54 8.68 15 3.68 3.29 3.06 6.36 5.42 4.89 4.56 4.32 4.00 3.89 3.80 3.73 3.67 3.36 2.66 2.59 3.89 2.54 2.8.5 4.44 2.74 2.49 2.45 2.42 2.37 2.28 3.37 3.25 16 4.49 3.63 3.24 3.01 2.33 8.53 6.23 5.29 4.77 4.20 4.03 3.78 3.69 3.61 3.55 3.45
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 1 images

Blurred answer
Knowledge Booster
Sample space, Events, and Basic Rules of Probability
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON