Here is another interesting pattern in Pascal's Triangle, which we will call the "hockey stick" property. C(i,r)=C(n+1,r+1) for 0≤r≤n. Below is an illustration where n=9 and r= 2 showing the "hockey stick" and the smaller "hockey stick" used in the induction step. ..C. C i=r Co C .c C₂ 2Co 2C₁ C₁ Co CoC 3C 3C 3C₂ 4C SCO SC₁/5C2₂/5C3 C4 3Cs C G C 4C1/C₂ S C C₁ с CC. Prove this result using mathematical induction. 2C₂ છે. છે. ઠે. . . . 3C₂ 4C3 4C4 C, /C₂ C₁ C₂ C C₂ C₁ C₂ C C₂ с с с с с с с C. 18 с, с, с CC. C. C

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Here is another interesting pattern in Pascal's Triangle, which we will call the "hockey stick" property.
C(i,r)=C(n+1,r+1) for 0≤r≤n.
Below is an illustration where n=9 and r=2 showing the "hockey stick" and the smaller "hockey stick"
used in the induction step.
i=r
- Co C₂
C.
C
4C
SCo 5C₁5C₂
C G/
C₁
3C0 3₁ 3₂ 33
C₁
IC C
C
C.
1oC. 10.C 1C₂
Prove this result using mathematical induction.
6.
4C1/C₂/4C3 C4
Se S. S. S. S. S.S.S.
7.C.C..Cs
/C₂ C₁ C₂ C
C₂ C₂ C₂ C₂ C₂
KC C C C C C
C₁ с с с
C. C, C
18
C
с с
C
с
C C
Transcribed Image Text:Here is another interesting pattern in Pascal's Triangle, which we will call the "hockey stick" property. C(i,r)=C(n+1,r+1) for 0≤r≤n. Below is an illustration where n=9 and r=2 showing the "hockey stick" and the smaller "hockey stick" used in the induction step. i=r - Co C₂ C. C 4C SCo 5C₁5C₂ C G/ C₁ 3C0 3₁ 3₂ 33 C₁ IC C C C. 1oC. 10.C 1C₂ Prove this result using mathematical induction. 6. 4C1/C₂/4C3 C4 Se S. S. S. S. S.S.S. 7.C.C..Cs /C₂ C₁ C₂ C C₂ C₂ C₂ C₂ C₂ KC C C C C C C₁ с с с C. C, C 18 C с с C с C C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,