Heat engine and refrigerator. Consider a heat engine operating between temperatures Th and Tj. During each cycle with time At, work W is extracted, so Pout = W/At. (a) Assuming the processes are all reversible, what is the efficiency of this heat engine, n = Wout/Qn? (b) Now assume that the low temperature of the heat engine is lowered by a reversible refrigerator, such that the heat engine operates between Th and T. The refrigerator takes input power Pin = Win/At and operates between T and Ti, where T < TỊ. Draw an energy- entropy flow diagram. (c) Calculate the net efficiency (Wout - Win)/Qh. Is the efficiency of this system higher, lower, or the same as your answer for (a)?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
Heat engine and refrigerator. Consider a heat engine operating between temperatures Th and
Tj. During each cycle with time At, work W is extracted, so Pout = W/At.
(a) Assuming the processes are all reversible, what is the efficiency of this heat engine, n =
Wout/Qn?
(b) Now assume that the low temperature of the heat engine is lowered by a reversible
refrigerator, such that the heat engine operates between Th and T. The refrigerator takes
input power Pin = Win/At and operates between T and T, where Ti < T. Draw an energy-
entropy flow diagram.
(c) Calculate the net efficiency (Wout - Win)/Qh. Is the efficiency of this system higher, lower, or
the same as your answer for (a)?
Transcribed Image Text:Heat engine and refrigerator. Consider a heat engine operating between temperatures Th and Tj. During each cycle with time At, work W is extracted, so Pout = W/At. (a) Assuming the processes are all reversible, what is the efficiency of this heat engine, n = Wout/Qn? (b) Now assume that the low temperature of the heat engine is lowered by a reversible refrigerator, such that the heat engine operates between Th and T. The refrigerator takes input power Pin = Win/At and operates between T and T, where Ti < T. Draw an energy- entropy flow diagram. (c) Calculate the net efficiency (Wout - Win)/Qh. Is the efficiency of this system higher, lower, or the same as your answer for (a)?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY