H1. A particle 1 of mass m₁ is attached to one end of a spring with constant k at position x = 0. It is initially at rest, with velocity u₁ = 0. The other end of the spring is attached to a fixed wall at position x = - where is the length of the spring at rest. The whole setup is horizontal along the x-axis. Another particle, 2, of mass m₂ travels towards particle 1 with constant velocity u₂ (note that u2 <0 in this setup). The two particles undergo a collision with coefficient of restitution 0 ≤e ≤ 1. (a) Using the one-dimensional equations of collision presented in the lectures show that imme- diately after collision the velocity of particle 1 is given by V1 = = (1+e). m242 m₁ + m₂ Find the velocity v2 of particle 2 immediately after collision. What happens to particle 2 if m₁ = m₂ and the collision is elastic (e = 1)? (b) Immediately after collision, particle 1 has velocity v₁ and is at position x = 0, which we take as initial conditions for its subsequent motion under the influence of the spring (we assume that there is no friction or resistance). Use energy arguments to determine how close particle 1 comes to the wall. In other words, find the minimum value of x(t) in terms of e, k, u2, m₁ and m2. If you aim to send particle 1 as close as possible to the wall by acting only on the coefficient of restitution e, what value of e would you pick? (We implicitly assume that the length of the spring is sufficiently long to ensure that the previous answer makes sense, i.e., l is large enough so that particle 1 does not crash into the wall)
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
Step by step
Solved in 6 steps